INTEGRALES DE LÍNEA Y DE SUPERFICIE EN CAMPOS VECTORIALES

ANGEL J. CALSIN CARI

INTEGRALES DE LÍNEA Y DE SUPERFICIE EN CAMPOS VECTORIALES

Integrales de Línea y de Superficie en Campos Vectoriales

Autor-Editor:

Angel Jesus Calsin Cari Jr. 28 de Julio – Juliaca – Puno ajcalsinc.doc@unaj.edu.pe Puno - Perú

Primera edición digital, febrero 2025

ISBN: 978-612-03-0632-1

Hecho el Depósito Legal en la Biblioteca Nacional del Perú N° 2025-01696

Libro electrónico disponible en:

https://tubibliogo.com/libros-gratis/

Índice general

1.	Inte	grales de línea de campos escalares	2	
	1.1.	Campos escalares	2	
		Aplicaciones:	3	
	1.3.	Problemas resueltos	3	
		Ejercicios Propuestos	12	
2.	Integrales de línea de campos vectoriales			
	2.1.	Campos vectoriales:	15	
	2.2.	Aplicaciones:	16	
	2.3.	Problemas resueltos	16	
	2.4.	Ejercicios Propuestos	23	
3.	Campos conservativos 25			
	3.1.	Problemas resueltos	26	
	3.2.	Ejercicios Propuestos	29	
4.	El teorema de Green 30			
	4.1.	Aplicación	30	
	4.2.	Problemas resueltos	30	
	4.3.	Ejercicios Propuestos	36	
5.	Integrales de Superficie 39			
	5.1.	Superficie parametrizada	39	
	5.2.	Superficie regular	39	
	5.3.	Integrales de superficie de campos escalares	39	
	5.4.	Aplicaciones de la integral de superficie de un campo escalar	40	
	5.5.	Área de una superficie	40	
	5.6.	Problemas resueltos	41	
	5.7.	Ejercicios Propuestos	54	
Ribliografía			55	

Capítulo 1

Integrales de línea de campos escalares

Sea U un conjunto abierto de \mathbb{R}^n . Un campo escalar sobre U es una función f que asigna a cada punto $x=(x_1,x_2,\cdots,x_n)$ de U un número real $f(x_1,x_2,\cdots,x_n)$ es decir: Un campo escalar sobre U es una función de la forma

$$f: U \to \mathbb{R}$$

 $x \mapsto f(x)$

1.1. Campos escalares

Definición 1.1.1 Sea Γ una curva regular en \mathbb{R}^n , parametrizada por $\vec{r} = \vec{r}(t)$ para $t \in [a,b]$ y $f: U \to \mathbb{R}$ un campo escalar continua en U, siendo U un conjunto abierto de \mathbb{R}^n que contiene a Γ , entonces $\int_{\Gamma} f ds$ y

$$\int_{\Gamma} f ds = \int_{a}^{b} f(\vec{r}(t)) ||\vec{r}'(t)|| dt$$

Propiedades:

- 1.- Sea $\vec{r}:[a,b]\to \mathbb{R}^n$ una curva regular tal que $\vec{r}([a,b])=\Gamma\subset\mathbb{R}^n$ es la traza \vec{r} . Sean $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ funciones definidas en el conjunto abierto U que contiene a la curva Γ , entonces se cumple
 - a) $\int_{\Gamma} kfds = k \int_{\Gamma} fds$, k es una constante.

b)
$$\int_{\Gamma} (f \pm g) ds = \int_{\Gamma} f ds \pm \int_{\Gamma} g ds, \ k$$

2.- Si la curva $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_n$, entonces;

$$\int_{\Gamma} f ds = \int_{\Gamma_1} f ds + \int_{\Gamma_2} f ds + \dots + \int_{\Gamma_n} f ds$$

3.- Dada la curva Γ con una orientación determinada se denota por $-\Gamma$ la misma curva con orientación opuesta y se cumple $\int_{-\Gamma} f ds = -\int_{\Gamma} f ds$

1.2. Aplicaciones:

1.- Masa de una curva

Si para cada $p \in \Gamma$, f se puede interpretar como la densidad lineal de un alambre cuya forma es representada por la curva Γ , entonces la masa del alambre viene dado por

$$M = \int_{\Gamma} f ds$$

2.- Momentos estáticos respecto de los planos coordenados

$$M_{xy} = \int_{\Gamma} z f(x, y, z) ds, \quad M_{xz} = \int_{\Gamma} y f(x, y, z) ds, \quad M_{yz} = \int_{\Gamma} x f(x, y, z) ds$$

3.- Centro de masa

El centro de masa de un alambre cuya forma viene dado por Γ y cuya densidad es descrita por la función f(x, y, z) está ubicado en el punto $(\bar{x}, \bar{y}, \bar{z})$ donde

$$\bar{x} = \frac{M_{yz}}{M}, \quad \bar{y} = \frac{M_{xz}}{M}, \quad \bar{z} = \frac{M_{xy}}{M}$$

1.3. Problemas resueltos

Ejercicio 1.1 Calcule la integral de línea $\int_{\Gamma} f ds$ sobre la curva Γ en cada uno de los siguientes casos:

- a) $f(x,y) = x \ \Gamma : x = t^3; \ y = t, \ 0 \le t \le 1$
- b) $f(x,y)=xy^4$ donde Γ es la circunferencia $x^2+y^2=16$
- c) f(x,y)=xy, donde Γ es el segmento de recta que une los puntos (-1;1) y (2;3)
- d) $f(x,y,z) = xy^2z$, donde Γ es el segmento de recta de extremos (1,0,1) y (0,3,6)

Solución:

a) La curva Γ en forma paramétrica esta dado por:

$$\Gamma : \vec{\alpha}(t) = (t^3, t), \ 0 \le t \le 1$$

 $\alpha'(t) = (3t^2, 1) \Rightarrow \|\vec{\alpha}'(t)\| = \sqrt{9t^4 + 1}$
como $ds = \|\vec{\alpha}'(t)\|dt \Rightarrow ds = \sqrt{9t^4 + 1}dt$

$$\int_{\Gamma} x ds = \int_{0}^{1} t^{3} \sqrt{9t^{4} + 1} dt; \quad \text{sea } 9t^{4} + 1 = u$$

$$\Rightarrow 36t^{3} dt = du$$

$$\text{si } t = 0 \Rightarrow u = 1$$

$$\text{si } t = 1 \Rightarrow u = 10$$

$$\int_{\Gamma} x ds = \int_{0}^{1} t^{3} \sqrt{9t^{4} + 1} dt = \int_{1}^{10} \frac{1}{36} u^{1/2} du = \frac{1}{54} (10\sqrt{10} - 1)$$

b) La curva Γ en forma paramétrica esta dado por:

$$\Gamma: \quad \vec{\alpha}(t) = (4\cos t, 4\sin t), \quad 0 \le t \le 2\pi$$
$$\vec{\alpha}'(t) = (-4\sin t, 4\cos t) \implies \|\alpha'(t)\| = 4$$
$$\text{como } ds = \|\vec{\alpha}'(t)\|dt \implies ds = 4dt$$

$$\int_{\Gamma} xy^4 ds = \int_{0}^{2\pi} (4\cos t)(4\sin t)^4 4dt = 4^6 \int_{0}^{2\pi} \cos t \sin^4 t dt$$
$$= 4^6 \left(\frac{\sin^5 t}{5}\right)\Big|_{0}^{2\pi} = 4^6 \left(\frac{\sin^5 2\pi}{5} - \frac{\sin^5 0}{5}\right) = 0$$

c) La curva Γ en forma paramétrica esta dado por:

$$\Gamma: \quad \vec{\alpha}(t) = (1-t)(-1,1) + t(2,3); \quad 0 \le t \le 1 \\ \vec{\alpha}(t) = (3t-1,1+2t); \quad 0 \le t \le 1 \\ \vec{\alpha}'(t) = (3,2) \implies \|\alpha'(t)\| = \sqrt{13} \\ \text{como } ds = \|\vec{\alpha}'(t)\|dt \implies ds = \sqrt{13}dt$$

$$\int_{\Gamma} xyds = \int_{0}^{1} (3t - 1)(1 + 2t)\sqrt{13}dt$$
$$= \sqrt{13} \int_{0}^{1} (6t^{2} + t - 1)dt$$
$$= \sqrt{13} \left(2t^{3} + \frac{t^{2}}{2} - t\right) \Big|_{0}^{1} = \frac{3}{2}\sqrt{13}$$

d) La curva Γ en forma paramétrica esta dado por:

$$\Gamma: \quad \vec{\alpha}(t) = (1 - t)(1, 0, 1) + t(0, 3, 6); \quad 0 \le t \le 1$$

$$\vec{\alpha}(t) = (1 - t, 3t, 1 + 5t); \quad 0 \le t \le 1$$

$$\vec{\alpha}'(t) = (-1, 3, 5) \implies \|\alpha'(t)\| = \sqrt{35}$$

$$\text{como } ds = \|\vec{\alpha}'(t)\|dt \implies ds = \sqrt{35}dt$$

$$\int_{\Gamma} xy^2 z ds = \int_0^1 (1-t)(3t)^2 (1+5t)\sqrt{35} dt$$
$$= \left(\int_0^1 (9t^2 + 35t^3 - 45t^4) dt\right)\sqrt{35}$$
$$= \sqrt{35} \left(3t^3 + 9t^4 - 9t^5\right)\Big|_0^1 = 3\sqrt{35}$$

Ejercicio 1.2 Evalúe $\int_{\Gamma} \sqrt{2y^2 + z^2} ds$ donde Γ es la intersección de las superficies $x^2 + y^2 + z^2 = a^2$, x = y:

Solución:

La curva Γ es forma parametrizada es dado por

$$\Gamma: \left\{ \begin{array}{l} x^2 + y^2 + z^2 = a^2 \\ x = y \end{array} \right. ; \quad 2x^2 + z^2 = a^2$$

$$\Gamma: \begin{cases} x = \frac{a \cos t}{\sqrt{2}} \\ y = \frac{a \cos t}{\sqrt{2}} ; \quad 0 \le t \le 2\pi \\ z = a \sin t \end{cases}$$

$$\Gamma \quad \alpha(t) = \left(\frac{a\cos t}{\sqrt{2}}, \frac{a\cos t}{\sqrt{2}}, a\sin t\right)$$
$$\alpha'(t) = \left(\frac{-a\sin t}{\sqrt{2}}, \frac{-a\sin t}{\sqrt{2}}, a\cos t\right) \implies \|\alpha'(t)\| = a$$

como $ds = \|\vec{\alpha}'(t)\|dt \implies ds = adt$

$$\int_{\Gamma} \sqrt{2y^2 + z^2} ds = \int_{0}^{2\pi} \sqrt{2\left(\frac{a\cos t}{\sqrt{2}}\right)^2 + (a\sin t)^2} a dt$$
$$= \int_{0}^{2\pi} a^2 dt$$
$$= 2\pi a^2$$

Ejercicio 1.3 Calcular la integral de línea $\int_{\Gamma} \frac{xdx + ydy + zdz}{x^2 + y^2 + z^2}$, donde Γ es el arco de la curva x = 2t, y = 2t + 1, $z = t^2 + t$ que une los puntos $P_1(0, 1, 0)$ y $P_2(2, 3, 2)$

Solución:

La curva parametrizada está dado por:

$$\vec{\alpha}(t) = (2t, 2t + 1, t^2 + t)$$

$$\begin{cases} \vec{\alpha}(a) = (2a, 2a+1, a^2+a) = (0, 1, 0) \\ \vec{\alpha}(b) = (2b, 2b+1, b^2+b) = (2, 3, 2) \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = 1 \end{cases}$$

$$\int_{\Gamma} \frac{xdx + ydy + zdz}{x^2 + y^2 + z^2} = \int_{0}^{1} \frac{2t(2) + (2t+1)2 + (t^2 + t)(2t+1)}{4t^2 + (2t+1)^2 + (t^2 + t)^2} dt$$

$$= \int_{0}^{1} \frac{2t^3 + 3t^2 + 9t + 2}{t^4 + 2t^3 + 9t^2 + 4t + 1} dt$$

$$= \left(\frac{1}{2} \ln|t^4 + 2t^3 + 9t^2 + 4t + 1|\right)_{0}^{1}$$

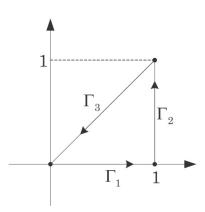
$$= \frac{1}{2} \ln 17$$

Ejercicio 1.4 Calcular $\int_{\Gamma} (x^2 + y^2) ds$ a ,o largo de los caminos indicados.

- a) El triángulo (0,0), (0,1) y (1,1) reconocido el sentido contrario al de las agujas del reloj.
- b) El circulo $x^2 + y^2 = 1$ des (1,0) a (0,1) recorrido en sentido contrario al de las agujas del reloj.

Solución:

a)



$$c = \int_{\Gamma_1} (x^2 + y^2) ds + \int_{\Gamma_2} (x^2 + y^2) ds + \int_{\Gamma_3} (x^2 + y^2) ds$$

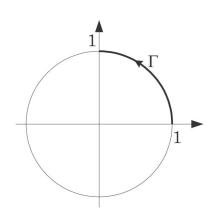
 $\Gamma_1: \ \alpha_1(t) = (t,0), \ 0 \le t \le 1, \ \Rightarrow \ ds = dt$

 $\Gamma_2: \alpha_2(t) = (1, t), \ 0 \le t \le 1, \Rightarrow ds = dt$

 $\Gamma_3: \ \alpha_3(t) = (1-t, 1-t), \ 0 \le t \le 1, \ \Rightarrow \ ds = \sqrt{2}dt$

$$\int_{\Gamma} (x^2 + y^2) ds = \int_{0}^{1} t^2 dt + \int_{0}^{1} (1 + t^2) dt + \int_{0}^{1} (1 - t^2)^2 + (1 - t^2) \sqrt{2} dt$$
$$= \frac{1}{3} + \frac{4}{3} + \frac{2\sqrt{2}}{3}$$
$$= \frac{2\sqrt{2} + 5}{3}$$

b)



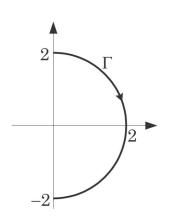
$$\Gamma: x^2 + y^2 = 1$$
, parametrizando

$$\Gamma: \left\{ \begin{array}{l} x = \cos t \\ y = \sin t \end{array} \right. ; \quad 0 \le t \le \frac{\pi}{2}$$

$$\Rightarrow \int_{\Gamma} (x^2 + y^2) ds = \int_{0}^{\pi/2} dt = \frac{\pi}{2}$$

Ejercicio 1.5 Un alambre delgado se dobla en forma de semicírculo $x^2 + y^2 = 4$, $x \ge 0$ si la densidad lineal es una constante k, encuentre la masa y el centro de masa del alambre.

Solución:



$$\Gamma: \begin{cases} x = -2\cos t \\ y = 2\sin t \end{cases}; \quad \frac{\pi}{2} \le t \le \frac{3\pi}{2}$$

$$\alpha(t) = (-2\cos t, 2\sin t)$$

$$\alpha'(t) = (2\sin t, 2\cos t) \implies \|\alpha'(t)\| = 2$$

La masa del alambre está dado por $M = \int f ds$

$$M = \int_{\Gamma} f ds = \int_{\pi/2}^{3\pi/2} k2dt$$

$$M = 2k\pi$$

los momentos estáticos respecto a los planos coordenados está dado por:

$$M_{xy} = \int 0 f(x, y, z) ds = 0$$

$$M_{xz} = \int_{\pi/2}^{3\pi/2} 2 \sin t \ k \ 2dt = 0$$

$$M_{yz} = \int_{\pi/2}^{3\pi/2} (-2\cos t) \ k \ 2dt = 8k$$

El centro de masa de un alambre cuya forma viene dada por Γ y cuya función densidad es descrita por f(x, y, z) = k está ubicada en el punto $(\overline{x}, \overline{y}, \overline{z})$ donde

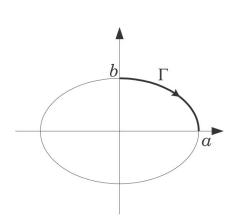
$$\overline{x} = \frac{M_{yz}}{M}, \qquad \overline{y} = \frac{M_{xz}}{M}, \qquad \overline{z} = \frac{M_{xy}}{M}$$

$$\overline{x} = \frac{8k}{2k\pi} = \frac{4}{\pi}, \qquad \overline{y} = 0, \qquad \overline{z} = 0$$

$$CM_0 = \left(\frac{4}{\pi}, 0, 0\right)$$

Ejercicio 1.6 Calcular la integral de línea $\int \frac{xdx + ydy}{\sqrt{1 + x^2 + y^2}}$ en el sentido de las agujas del reloj a lo largo del cuarto de elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ que se encuentra en el primer cuadrante

Solución:



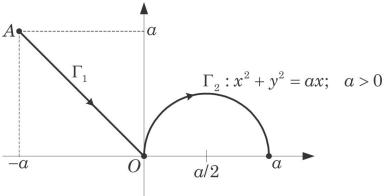
Se observa que la expresión $\frac{xdx + ydy}{\sqrt{1 + x^2 + y^2}}$ es la diferencial total de la función

$$f(x,y) = \sqrt{1+x^2+y^2}$$

$$\int_{\Gamma} \frac{xdx + ydy}{\sqrt{1+x^2+y^2}} = \int_{(b,0)}^{(a,0)} df(x,y) = f(x,y) \Big|_{(0,b)}^{(a,0)}$$

$$\int_{\Gamma} \frac{xdx + ydy}{\sqrt{1+x^2+y^2}} = \sqrt{1+a^2} - \sqrt{1+b^2}$$

Ejercicio 1.7 Calcular $\int_{\Gamma} \sqrt{x^2 + y^2} ds$, donde $\Gamma = \Gamma_1 \cap \Gamma_2$ está dado en el siguiente gráfico:



Solución:

Se pide calcular
$$\int_{\Gamma} \sqrt{x^2 + y^2} ds = \int_{\Gamma_1} \sqrt{x^2 + y^2} ds + \int_{\Gamma_2} \sqrt{x^2 + y^2} ds$$

Prametrizando Γ_1 , que es el segmento de recta \overline{AO}

$$\vec{\alpha}_1(t) = A + (0 - A)t$$

$$\vec{\alpha}_1(t) = (-a + at, a - at)$$

$$\vec{\alpha}_1(t) = (-a + at, a - at)$$

$$\vec{\alpha}_1(t) = (a, -a) \implies ||\vec{\alpha}_1'(t)||a\sqrt{2} \implies ds = a\sqrt{2}t$$

parametrizando
$$\Gamma_2$$

$$(1) \cdot \cdot \cdot \cdot \cdot \cdot \begin{cases} x = r \cos t \\ y = r \sin t \end{cases}; \quad x^2 + y^2 = r^2$$

con estas coordendas polares, la ecuación
$$x^2 + y^2 = ax$$
 se convierte en $(2) \cdot \cdot \cdot \cdot \cdot r^2 = a \cos t \implies r = a \cos t; \quad 0 \le t \le \frac{\pi}{2}$ para $-\Gamma_2$ que es el opuesto de Γ_2

$$(2)$$
 en (1)

$$-\Gamma_2 \left\{ \begin{array}{l} x = a\cos t \cdot \cos t = a\cos^2 t \\ \\ y = a\cos t \cdot \sin t = a\cos t \sin t \end{array} \right.$$

$$\vec{\alpha}_2: \quad \left[0; \frac{\pi}{2}\right] \to \mathbb{R}^2$$

$$t \mapsto \vec{\alpha}(t) = (a\cos^2 t, a\cos t \sin t)$$

$$\alpha'(t) = (-a \operatorname{sen} t, a \operatorname{cos} t) \Rightarrow \|\vec{\alpha}'_2(t)\| = a \Rightarrow ds = adt$$

$$\int_{\Gamma_1} \sqrt{x^2 + y^2} ds = \int_0^1 \sqrt{(-a + at)^2 + (a - at)^2} a \sqrt{2} dt$$
$$= \int_0^1 a(t - 1)\sqrt{2}a\sqrt{2} dt$$
$$= 2a^2 \int_0^1 (t - 1) dt = -a^2$$

$$\int_{-\Gamma_2} \sqrt{x^2 + y^2} ds = -\int_{\Gamma_2} \sqrt{x^2 + y^2} ds = \int_0^{\pi/2} \sqrt{r^2} a dt$$

$$= -a \int_0^{\pi/2} r dt$$

$$= -a \int_0^{\pi/2} a \cos t dt$$

$$= -a^2$$

$$\therefore \int_{\Gamma} f ds = -a^2 - a^2 = -2a^2$$

Ejercicio 1.8 Calcule la integral de línea $\int_{\Gamma} f ds$ sobre la curva Γ en cada uno de los siguientes casos:

- a) $f(x,y) = e^x + y$, donde Γ es la semicircunferencia $x^2 + y^2 = 4$, $y \ge 0$.
- b) $f(x,y) = x^2 y$, donde Γ es el segmento de recta que une los puntos (0,0) y (3,4).
- c) $f(x,y,z)=xz+y^2$, donde Γ es la intersección de la esfera $x^2+y^2+z^2=4$ y el plano z=1.
- d) f(x,y,z) = xy + yz, donde Γ es la hélice $\alpha(t) = (\cos t, \sin t, t)$ para $0 \le t \le 2\pi$.
- e) $f(x,y) = x^3 + y^3$, donde Γ es la curva $y = x^2$, con $0 \le x \le 2$.

Ejercicio 1.9 Evalúe $\int_{\Gamma} \sqrt{x^2 + y^2} ds$ donde Γ es el círculo $x^2 + y^2 = a^2$.

Solución:

La curva Γ en forma paramétrica está dada por:

 $\Gamma: \alpha(t) = (a\cos t, a\sin t), \ 0 \le t \le 2\pi$

$$ds = \|\alpha'(t)\|dt = \sqrt{(-a\sin t)^2 + (a\cos t)^2}dt$$
$$= \sqrt{a^2(\sin^2 t + \cos^2 t)}dt = adt$$

$$\int_{\Gamma} \sqrt{x^2 + y^2} ds = \int_{0}^{2\pi} a^2 dt$$
$$= 2\pi a^2$$

Ejercicio 1.10 Evalúe $\int_{\Gamma} (x+y)ds$ donde Γ es el segmento de recta que une los puntos (1,2) y (4,6).

Solución:

La curva Γ en forma paramétrica está dada por:

$$\Gamma: \alpha(t) = (1+3t, 2+4t), \ 0 \le t \le 1$$

$$ds = \|\alpha'(t)\|dt = \sqrt{(3)^2 + (4)^2}dt = 5dt$$

$$\int_{\Gamma} (x+y)ds = \int_{0}^{1} (1+3t+2+4t)5dt$$

$$= \int_{0}^{1} (3+7t)5dt$$

$$= 5\left[3t + \frac{7}{2}t^2\right]_{0}^{1}$$

$$= 5(3+\frac{7}{2}) = \frac{65}{2}$$

Ejercicio 1.11 Calcule $\int_{\Gamma} (x^2 + yz) ds$ donde Γ es la curva paramétrica $\alpha(t) = (t, t^2, t^3)$ para $0 \le t \le 1$.

Solución:

$$ds = \|\alpha'(t)\|dt = \sqrt{(1)^2 + (2t)^2 + (3t^2)^2}dt$$
$$= \sqrt{1 + 4t^2 + 9t^4}dt$$

$$\int_{\Gamma} (x^2 + yz)ds = \int_{0}^{1} (t^2 + t^2t^3)\sqrt{1 + 4t^2 + 9t^4}dt$$

Ejercicio 1.12 Calcule $\int_{\Gamma} (x^2 - y^2) ds$ donde Γ es la espiral logarítmica $\alpha(t) = (e^t \cos t, e^t \sin t)$ para $0 \le t \le 2\pi$.

Solución:

$$ds = \|\alpha'(t)\|dt = \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2}dt$$

$$= \sqrt{e^{2t}(\cos^2 t - 2\cos t \sin t + \sin^2 t + \sin^2 t + 2\cos t \sin t + \cos^2 t)}dt$$

$$= e^t \sqrt{2}dt$$

$$\int_{\Gamma} (x^2 - y^2) ds = \int_{0}^{2\pi} (e^{2t} \cos^2 t - e^{2t} \sin^2 t) e^t \sqrt{2} dt$$
$$= \sqrt{2} \int_{0}^{2\pi} e^{3t} (\cos^2 t - \sin^2 t) dt$$

1.4. Ejercicios Propuestos

Ejercicio 1.13 Evalúe la integral de línea

$$\int_{\Gamma} f ds$$

para los siguientes casos:

- a) f(x,y) = x + y, donde Γ es el segmento de recta que une los puntos (1,2) y (4,6).
- b) $f(x,y) = e^x y^2$, donde Γ es la circunferencia $x^2 + y^2 = 9$ en sentido antihorario.
- c) $f(x,y,z)=x^2y+z^3$, donde Γ es la hélice $\alpha(t)=(t,\sin t,\cos t)$ con $0\leq t\leq 2\pi$.
- d) $f(x,y) = x^3 y^3$, donde Γ es la parábola $y = x^2$, $0 \le x \le 3$.
- e) $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$, donde Γ es la intersección de la esfera $x^2 + y^2 + z^2 = 4$ y el plano z = 1.

Ejercicio 1.14 Calcule la integral de línea

$$\int_{\Gamma} \sqrt{x^2 + y^2} ds$$

a lo largo de los siguientes caminos:

a) El cuarto de círculo $x^2+y^2=4$ en el primer cuadrante, con orientación en sentido antihorario.

- b) El segmento de recta que une los puntos (0,0) y (3,4).
- c) La curva paramétrica $\alpha(t)=(t^2,t^3),\ con\ 0\leq t\leq 1.$

Ejercicio 1.15 Encuentre la masa del alambre cuya densidad está dada por la función $f(x,y) = x^2 + y^2$, cuando el alambre tiene la forma de:

- a) Un círculo de radio 3 centrado en el origen.
- b) Un triángulo con vértices (0,0), (3,0) y (3,4).
- c) Una hélice $\alpha(t) = (t, \sin t, \cos t)$, con $0 \le t \le 2\pi$.

Ejercicio 1.16 Calcule la integral de línea

$$\int_{\Gamma} x^2 ds$$

donde Γ es:

- a) La espiral logarítmica $\alpha(t) = (e^t \cos t, e^t \sin t)$ para $0 \le t \le 2\pi$.
- b) La curva $\alpha(t) = (\cos t, \sin t, t)$ para $0 \le t \le \pi$.

Ejercicio 1.17 Determine la integral de línea

$$\int_{\Gamma} (x^2 + y^2 + z^2) ds$$

donde Γ es:

- a) El segmento de recta que une los puntos (1,0,0) y (0,1,1).
- b) La circunferencia $x^2 + y^2 = 4$, z = 2.
- c) La parábola espacial $\alpha(t)=(t,t^2,t^3),\ con\ 0\leq t\leq 1.$

Ejercicio 1.18 Utilizando coordenadas polares, calcule la integral

$$\int_{\Gamma} (x^2 + y^2) ds$$

donde Γ es la región delimitada por la cardioide $r = 2(1 + \cos \theta)$.

Ejercicio 1.19 Calcule el centro de masa de un alambre de densidad f(x,y) = x + y en los siguientes casos:

- a) Un semicírculo de radio 2 centrado en el origen.
- b) Un triángulo con vértices (0,0), (4,0) y (4,3).

Ejercicio 1.20 Evalúe la integral de línea

$$\int_{\Gamma} xyds$$

donde Γ es:

- a) La curva $\alpha(t) = (t, t^2)$ para $0 \le t \le 2$.
- b) La hélice $\alpha(t) = (t, \cos t, \sin t)$ para $0 \le t \le 2\pi$.

Ejercicio 1.21 Encuentre la masa y el centro de masa de un alambre cuya densidad es $f(x,y) = \sqrt{x^2 + y^2}$ y cuya forma es:

- a) Un cuarto de círculo de radio 3 en el primer cuadrante.
- b) Una hélice de la forma $\alpha(t) = (2\cos t, 2\sin t, t)$ con $0 \le t \le 4\pi$.

Ejercicio 1.22 Evalúe la integral de línea

$$\int_{\Gamma} x^3 ds$$

para los siguientes caminos:

- a) La espiral $\alpha(t) = (t \cos t, t \sin t), 0 \le t \le 2\pi$.
- b) La curva $\alpha(t)=(e^t,e^{-t}),\ 0\leq t\leq 1.$

Ejercicio 1.23 Calcule el centro de masa de un alambre con densidad $f(x,y) = x^2 + y^2$, cuando la curva Γ es:

- a) Una semicircunferencia de radio R centrada en el origen.
- b) La hélice $\alpha(t) = (2\cos t, 2\sin t, t)$ para $0 \le t \le 2\pi$.

Ejercicio 1.24 Evalúe la integral de línea

$$\int_{\Gamma} e^{x+y} ds$$

para los siguientes caminos:

- a) El segmento de recta que une los puntos (1,1) y (3,4).
- b) La curva $\alpha(t) = (e^t, e^{-t}), \ 0 \le t \le 1.$

Capítulo 2

Integrales de línea de campos vectoriales

2.1. Campos vectoriales:

Sea U un conjunto abierto de \mathbb{R}^n , un campo vectorial sobre U es una función \vec{F} que asigna a cada punto $x=(x_1,x_2,\cdots,x_n)$ en U un vector n-dimensional $\vec{F}(x_1,x_2,\cdots,x_n)$, esto es un campo vectorial en U es una función de la forma:

$$\vec{F}_2: U \to \mathbb{R}^2$$

 $x \mapsto \vec{F}(x)$

Definición 2.1.1 Sea Γ una curva regular \mathbb{R}^n parametrizada por la función $\vec{r} = \vec{r}(t)$, $t \in [a,b]$ y $\vec{F}: U \to \mathbb{R}^n$ un campo vectorial continuo en el conjunto abierto $U \subset \mathbb{R}^n$ que contiene a Γ , entonces existe

$$\int_{\Gamma} \vec{F} dr = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Observación:

- 1.- A diferencia de la integral de línea de campo escalares en la integral de línea de campos vectoriales la orientación se influye en la respuesta.
- 2.- Si la curva Γ es cerrada, la integral de línea,

$$\int_{\Gamma} \vec{F} d\vec{r} \quad \text{se denota por } = \oint_{\Gamma} \vec{F} d\vec{r}$$

Propiedades:

1.- Sea $\vec{F}: U \to \mathbb{R}^n$ campo vectorial continuo sobre el abierto U de \mathbb{R}^n , y sea Γ una curva regular parametrizada por $\vec{r}([a,b]) \to \mathbb{R}^n$ tal que $\Gamma = \vec{r}([a,b]) \subset U$, entonces

$$\int_{-\Gamma} \vec{F} d\vec{r} = -\int_{\Gamma} \vec{F} d\vec{r}$$

donde $-\Gamma$ representa la curva Γ pero con orientación contraria.

2.- Sea $\vec{F}: U \to \mathbb{R}^n$ campo vectorial continuo sobre el abierto U de \mathbb{R}^n y Γ una curva regular por partes, donde $\Gamma = \Gamma - 1 \cup \Gamma_2 \cup \cdots \cup \Gamma_m$, entonces se cumple

$$\int_{\Gamma} \vec{F} d\vec{r} = \int_{\Gamma_1} \vec{F} d\vec{r}_1 + \int_{\Gamma_2} \vec{F} d\vec{r}_2 + \dots + \int_{\Gamma_m} \vec{F} d\vec{r}_m$$

3.- Sean \vec{F} , $\vec{G}: U \to \mathbb{R}^n$ campos vectoriales continuos sobre un conjunto abierto U de \mathbb{R}^n y Γ una curva regular por partes parametrizada por $\vec{r}: [a,b] \to \mathbb{R}^n$ tal que $\Gamma = \vec{r}([a,b]) \subset U$, entonces se cumple

$$\int_{\Gamma} (m\vec{F} + n\vec{G}) d\vec{r} = m \int_{\Gamma} \vec{F} d\vec{r} + n \int_{\Gamma} \vec{F} d\vec{r}, \text{ para } m, n \in \mathbb{R}$$

2.2. Aplicaciones:

Trabajo.- El trabajo realizado por el campo de fuerzas \vec{F} a lo largo de la curva Γ parametrizada por $\vec{r} = \vec{r}(t), \ t \in [a,b]$ para trasladar una partícula desde r(a), hasta r(b) se define como

$$W = \int_{\Gamma} \vec{F} \cdot \vec{r}$$

2.3. Problemas resueltos

Ejercicio 2.1 Calcule $\int \frac{xdx + ydy}{(x^2 + y^2)^{3/2}}$, donde $\Gamma : \vec{r}(t) = \left(e^{2t}\cos 3t, e^{2t}\sin 3t\right)$ donde $t \in [0,2\pi]$

Solución:

$$\frac{xdx + ydy}{(x^2 + y^2)^{3/2}} = \frac{\left[(e^{2t}\cos 3t)(2e^{2t}\cos 3t - 3e^{2t}\sin 3t) + (e^{2t}\sin 3t)(2e^{2t}\sin 3t - 3e^{2t}\cos 3t) \right]}{\left[(e^{2t}\cos 3t)^2 + (e^{2t}\sin 3t)^2 \right]^{3/2}}$$

$$= \frac{\left[(\cos 3t)(2\cos 3t - 3\sin 3t) + (\sin 3t)(2\sin 3t - 3\cos 3t) \right]}{e^{2t}} dt$$

$$= \frac{2}{e^{2t}} dt$$

$$\int_{\Gamma} \frac{xdx + ydy}{(x^2 + y^2)^{3/2}} = \int_{0}^{2\pi} \frac{2dt}{e^{2t}}$$

$$= \frac{e^{4\pi} - 1}{e^{4\pi}}$$

Ejercicio 2.2 Sea $\vec{F}(x,y)=(x^2+y)i+(y-x)j$ y consideremos las siguientes curvas Γ_1 y Γ_2 parametrizadas por $\vec{r}(t)=(t,t^2),\ t\in[0,1], \vec{s}(t)=(1-2t,4t^2-4t+1),\ t\in\left[0,\frac{1}{2}\right]$ calcule $\int_{\Gamma_1} \vec{F} \cdot d\vec{r}$ y $\int_{\Gamma_2} \vec{F} \cdot d\vec{r}$

Solución:

$$\int_{\Gamma_1} \vec{F} \cdot d\vec{r} = \int_{\Gamma} (x^2 + y) dx + (y - x) dy$$

$$= \int_{0}^{1} (t^2 + t^2) dt + (t^2 - t) 2t dt$$

$$= \int_{0}^{1} 2t^2 dt + \int_{0}^{1} (2t^3 - 2t^2) dt$$

$$= \int_{0}^{1} 2t^3 dt = \frac{1}{2} t^4 \Big|_{0}^{1}$$

$$= \frac{1}{2}$$

$$\int_{\Gamma_2} \vec{F} \cdot d\vec{r} = \int_{\Gamma_2} (x^2 + y) dx + (y - x) dy$$
como Γ_2 : $\vec{s}(t) = (1 - 2t, (1 - 2t)^2), t \in \left[0, \frac{1}{2}\right]$

$$\int_{\Gamma_2} \vec{F} \cdot d\vec{s} = \int_{\Gamma_2} (x^2 + y) dx + (y - x) dy$$

$$= \int_0^{1/2} ((1 - 2t)^2 + (1 - 2t)^2)(-2dt) + ((1 - 2t)^2 - (1 - 2t))(2(1 - 2t))(-2dt)$$

$$= \int_0^{1/2} (2(1 - 2t)^2 + 2(1 - 2t)^3 - 2(1 - 2t)^2)(-dt)$$

$$= \int_0^{1/2} 2(1 - 2t)^3(-2dt) = \int_0^{1/2} -4(1 - 2t)^3 dt$$

$$= \frac{1}{2^5} = \frac{1}{32}$$

Ejercicio 2.3 Sea $\vec{F}(x,y) = (xy)i + (x^2 - y)j$ y consideremos las siguientes curvas Γ_1 y Γ_2 parametrizadas por $\vec{r}(t) = (t,t^3)$, $t \in [0,1]$ y $\vec{s}(t) = (\cos t, \sin t)$, $t \in [0,\pi]$. Calcule $\int_{\Gamma_1} \vec{F} \cdot d\vec{r}$ y $\int_{\Gamma_2} \vec{F} \cdot d\vec{r}$.

Solución:

Cálculo sobre γ_1 La curva γ_1 está dada por:

$$\vec{r}(t) = (t, t^3), \quad 0 \le t \le 1$$

Derivamos:

$$\vec{r}'(t) = (1, 3t^2)$$

Calculamos la integral:

$$\begin{split} \int_{\Gamma_1} \vec{F} \cdot d\vec{r} &= \int_{\Gamma_1} (xy) dx + (x^2 - y) dy \\ &= \int_0^1 (t \cdot t^3) (1) dt + \int_0^1 (t^2 - t^3) (3t^2) dt \\ &= \int_0^1 t^4 dt + \int_0^1 (3t^4 - 3t^5) dt \\ &= \left. \frac{t^5}{5} \right|_0^1 + \left(\frac{3t^5}{5} - \frac{3t^6}{6} \right) \Big|_0^1 \\ &= \frac{1}{5} + \left(\frac{3}{5} - \frac{1}{2} \right) \\ &= \frac{1}{5} + \frac{6}{10} - \frac{5}{10} \\ &= \frac{1}{5} + \frac{1}{10} = \frac{3}{10} \end{split}$$

Cálculo sobre γ_2 La curva γ_2 está dada por:

$$\vec{s}(t) = (\cos t, \sin t), \quad 0 \le t \le \pi$$

Derivamos:

$$\vec{s}'(t) = (-\sin t, \cos t)$$

Calculamo

Ejercicio 2.4 Calcule $\int_{\Gamma} (x^2 - y) dx + (x - y^2) dy$, siendo Γ el segmento de recta de extremo inicial (1,1) y extremo final (3,5)

Solución:

$$\Gamma : \vec{r}(t) = (1-t)(1,1) + t(3,5)$$
$$= (1+2t, 1+4t); \ 0 \le t \le 1$$

$$\int_{\Gamma} (x^2 - y) dx + (x - y^2) dy = \int_{0}^{1} ((1 + 2t)^2 - (1 + 4t))(2dt) + \int_{0}^{1} (1 + 2t - (1 + 4t)^2)(4dt)$$
$$= \int_{0}^{1} (-56t^2 - 24t)2dt$$
$$= -\frac{92}{3}$$

Ejercicio 2.5 Calcule $\int_{\Gamma} \vec{F} d\vec{r}$, donde $\vec{F}(x,y,z) = (xy,yz,xz)$ y la curva Γ es la intersección de las superficies $x^2 + y^2 = 1$, xy + z = 1, recorrida en sentido antihorario vista desde la parte positiva del eje Z.

Solución:

Parametrizando Γ por la fucnión

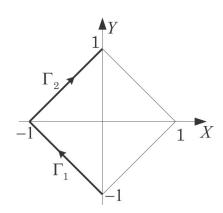
$$\Gamma \cdot \vec{r}(t) = \begin{cases} x(t) = \cos t \\ y(t) = \sin t & ; \quad t \in [0, 2\pi] \\ z(t) = 1 - \cos t - \sin t \end{cases}$$

Sea
$$I = \int_{\Gamma} xydx + yzdy + xzdz$$
, entonces

$$I = \int_0^{2\pi} [\cos t \sec t (-\sec t dt) + \sec t (1 - \cos t - \sec t) (\cos t dt) + \\ + \cos t (1 - \cos t - \sec t) (\sec t - \cos t) dt]$$
$$= \int_0^{2\pi} (-3 \sec^2 t \cos t + 2 \sec t \cos t - \sec t \cos^2 t - \cos^2 t + \cos^3 t) dt$$
$$= -\pi$$

Ejercicio 2.6 Si Γ es la curva definida por la ecuación |x| + |y| = 1; $x \le 0$ recorrida en sentido horario halle $\int_{\Gamma} (y - x) dx + (x + y) dy$.

Solución:



$$\Gamma_{1} : \vec{r}(t) = (0, -1)(1 - t) + t(-1, 0)$$

$$= (-t, t - 1); \quad 0 \le t \le 1$$

$$\Gamma_{2} : \vec{s}(t) = (-1, 0)(1 - t) + t(0, 1)$$

$$= (t - 1, t); \quad 0 \le t \le 1$$

$$\Gamma = \Gamma_{1} \cup \Gamma_{2}$$

$$\begin{split} \int_{\Gamma} (y-x)dx + (x+y)dy &= \int_{\Gamma_1} (y-x)dx + (x+y)dy + \int_{\Gamma_2} (y-x)dx + (x+y)dy \\ &= \int_0^1 (t-1+t)(-dt) + (-1)dt + \int_0^1 (t-t+1)dt + (2t-1)dt \\ &= \int_0^1 (0)(dt) \\ &= 0 \end{split}$$

Ejercicio 2.7 Calcule el trabajo realizado por el campo de fuerzas $\vec{F}(x,y) = (y,-x)$ que actúa sobre una partícula que se mueve sobre el arco de parábola $x = 4-y^2$, sabiendo que el recorrido se inicia en el punto (-5,3) y termina en el punto (0,2)

Solución:

Parametrizando Γ se tiene

$$\Gamma : \vec{r}(t) = \begin{cases} x = 4 - t^2 \\ y = t \end{cases} ; \quad t \in [-2, 2]$$

El trabajo realizado por \vec{F} sobre Γ se define por

$$W = \int_{\Gamma} \vec{F} \cdot d\vec{r}$$

luego:

$$W = \int_{\Gamma} y dx - x dy$$

$$= \int_{-2}^{2} t(-2t dt) - 4(-t^{2}) dt$$

$$= -\int_{-2}^{2} (t^{2} + 4) dt$$

$$= -\frac{64}{3}$$

Ejercicio 2.8 Calcule el trabajo que realiza el campo de fuerzas

$$\vec{F} = (\ln(1+z^2), z^2 - x^2, x^2 - y^2)$$

para desplazar una partícula desde el punto $(2,\sqrt{2},\sqrt{2})$ hasta el punto $(2,-\sqrt{2},\sqrt{2})$ a lo largo del camino mas corto sobre la curva

$$\Gamma : \vec{r}(t) = \begin{cases} x^2 + y^2 + z^2 = 8\\ y^2 + z^2 = 2x \end{cases}$$

Solución:

La curva Γ también puede definirse como $\begin{cases} x = 2 \\ y^2 + z^2 = 4 \end{cases}$

luego

$$\Gamma: \vec{r}(t) = (2, 2\cos t, 2\sin t); \quad t \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$

$$W = \int \ln(1+z^2)dx + (z^2 - x^2)dy + (x^2 - y^2)dz$$

$$= \int_{\pi/4}^{3\pi/4} [(4 \sin^2 - 4)(-2 \sin t) + (4 - 4 \cos^2 t)(2 \cos t)]dt$$

$$= \int_{\pi/4}^{3\pi/4} (-8 \sin^3 t + 8 \sin t + 8 \cos t - 8 \cos^3 t)$$

$$= \left[\frac{8}{3} \sin^2 t \cos t - \frac{8}{3} \cos t + \frac{8}{3} \sin t - \frac{8}{3} \cos^2 t \sin t \right]_{\pi/4}^{3\pi/4}$$

$$= \frac{4\sqrt{2}}{4}$$

Ejercicio 2.9 Calcule el trabajo que realiza el campo de fuerzas

$$\vec{F} = (\ln(1+z^2), z^2 - x^2, x^2 - y^2)$$

para desplazar una partícula desde el punto $(2, \sqrt{2}, \sqrt{2})$ hasta el punto $(2, -\sqrt{2}, \sqrt{2})$ a lo largo del camino mas corto sobre la curva

$$\Gamma : \vec{r}(t) = \begin{cases} x^2 + y^2 + z^2 = 8\\ y^2 + z^2 = 2x \end{cases}$$

Solución:

La curva Γ también puede definirse como $\begin{cases} x = 2 \\ u^2 + z^2 = 4 \end{cases}$

$$\Gamma : \vec{r}(t) = (2, 2\cos t, 2\sin t); \quad t \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$

$$W = \int \ln(1+z^2)dx + (z^2 - x^2)dy + (x^2 - y^2)dz$$

$$= \int_{\pi/4}^{3\pi/4} [(4 \sin^2 - 4)(-2 \sin t) + (4 - 4 \cos^2 t)(2 \cos t)]dt$$

$$= \int_{\pi/4}^{3\pi/4} (-8 \sin^3 t + 8 \sin t + 8 \cos t - 8 \cos^3 t)$$

$$= \left[\frac{8}{3} \sin^2 t \cos t - \frac{8}{3} \cos t + \frac{8}{3} \sin t - \frac{8}{3} \cos^2 t \sin t \right]_{\pi/4}^{3\pi/4}$$

$$= \frac{4\sqrt{2}}{4}$$

Ejercicio 2.10 Dado el campo de fuerzas $\vec{F} = (x^2, y^2, z)$. Halle el trabajo realizado por $ec{F}$ para trasladar una particula desde el origen de coordenadas hasta el punto (2,2,4) a lo largo de la curva

$$\Gamma: \begin{cases} x^2 + y^2 = 2z \\ z = x \end{cases}$$

Solución:

$$\Gamma: \begin{cases} x^2 + y^2 = 2xy \\ z = xy \end{cases}$$

$$\Gamma: \left\{ \begin{array}{l} x = y \\ z = xy \end{array} \right.$$

Una parametrización para $\Gamma: x(t) = y(t) = t, \ z(t) = t^2$ esto es,

$$\vec{r}(t) = (t, t, t^2); \quad t \in [0, 2]$$

luego

$$W = \int_{\Gamma} x^2 dx + y^2 dy + z dz$$
$$= \int_{0}^{2} (2t^2 + 2t^3) dt$$
$$= \frac{40}{3}$$

2.4. Ejercicios Propuestos

Ejercicio 2.11 Calcule la integral de línea $\int_{\Gamma} \vec{F} \cdot d\vec{r}$, donde $\vec{F}(x,y) = (x^2 - y, y^2 + x)$ $y \Gamma$ es la curva parametrizada por $\vec{r}(t) = (t^2, t)$ con $t \in [0, 1]$.

Ejercicio 2.12 Sea $\vec{F}(x,y)=(x^2-y,x+y^2)$ y considere la curva Γ dada por la intersección de la circunferencia $x^2+y^2=4$ y la recta y=x. Evalúe $\int_{\Gamma} \vec{F} \cdot d\vec{r}$.

Ejercicio 2.13 Halle la circulación del campo $\vec{F}(x,y) = (-y,x)$ alrededor de la circulferencia $x^2 + y^2 = 9$, recorrida en sentido antihorario.

Ejercicio 2.14 Calcule el trabajo realizado por el campo $\vec{F}(x,y,z) = (xy,yz,xz)$ a lo largo de la curva $\Gamma : \vec{r}(t) = (\cos t, \sin t, t)$ con $0 \le t \le 2\pi$.

Ejercicio 2.15 Sea $\vec{F}(x,y) = (x^2 - y, y - x^2)$. Verifique si \vec{F} es conservativo y, en caso afirmativo, halle una función potencial $\phi(x,y)$.

Ejercicio 2.16 Calcule el trabajo del campo $\vec{F}(x,y) = (2xy, x^2 - y)$ sobre el camino recto que une los puntos (1,2) y (4,5).

Ejercicio 2.17 Determine si el campo $\vec{F}(x, y, z) = (y^2 + z, xz, xy - z)$ es conservativo. En caso afirmativo, encuentre su función potencial.

Ejercicio 2.18 Evalúe la integral de línea $\int_{\Gamma} (x+y)ds$, donde Γ es la curva $\vec{r}(t) = (t,t^3)$ con $0 \le t \le 1$.

Ejercicio 2.19 Calcule la circulación de $\vec{F}(x,y) = (y,-x)$ alrededor del triángulo con vértices (0,0), (2,0) y (0,2) recorrido en sentido antihorario.

Ejercicio 2.20 Verifique si el campo $\vec{F}(x,y) = (ye^x, xe^y)$ es conservativo y, en caso afirmativo, determine una función potencial $\phi(x,y)$.

Ejercicio 2.21 Calcule la integral de línea $\int_{\Gamma} (x^2 + yz)ds$, donde Γ es la intersección del cilindro $x^2 + y^2 = 4$ y el plano z = y, recorrida en sentido antihorario.

Ejercicio 2.22 Calcule la integral de línea $\int_{\Gamma} (x^2 - y^2) ds$ sobre la intersección de la esfera $x^2 + y^2 + z^2 = 9$ y el cono $z = \sqrt{x^2 + y^2}$.

Ejercicio 2.23 Determine si el campo $\vec{F}(x,y) = (3x^2 + y^2, 2xy)$ es conservativo y, en caso afirmativo, encuentre una función potencial $\phi(x,y)$.

Ejercicio 2.24 Calcule la circulación del campo $\vec{F}(x,y) = (y^3, x^3)$ sobre la elipse $x^2/4 + y^2/9 = 1$, recorrida en sentido antihorario.

Ejercicio 2.25 Verifique si el campo $\vec{F}(x, y, z) = (\cos y, \sin x, ze^y)$ es conservativo. En caso afirmativo, encuentre su función potencial $\phi(x, y, z)$.

Ejercicio 2.26 Calcule el trabajo realizado por el campo $\vec{F}(x,y,z) = (x+y,y+z,z+x)$ a lo largo de la hélice $\Gamma: \vec{r}(t) = (\cos t, \sin t, t)$ con $0 \le t \le 2\pi$.

Ejercicio 2.27 Verifique si el campo $\vec{F}(x, y, z) = (x^2 - y^2, 2xy, ze^z)$ es conservativo y, en caso afirmativo, determine su función potencial.

Ejercicio 2.28 Evalúe la integral de línea $\int_{\Gamma} x^2 ds$ sobre la curva $\Gamma : \vec{r}(t) = (t, t^2)$ con $0 \le t \le 1$.

Ejercicio 2.29 Determine si el campo $\vec{F}(x,y) = (-y,x)$ es conservativo. En caso negativo, calcule la circulación sobre el círculo $x^2 + y^2 = 4$ recorrido en sentido antihorario.

Capítulo 3

Campos conservativos

Definición 3.0.1 (Conexo) Sea U un subconjunto de \mathbb{R}^n , diremos que U es conexo (por caminos) si dos puntos cualesquiera de U pueden unirse mediante una curva totalmente contenida en U.

Definición 3.0.2 Sea U un subconjunto conexo y abierto de \mathbb{R}^n , y $\vec{F}: U \to \mathbb{R}^n$ un campo vectorial continuo, diremos que la integral $\int_{\Gamma_1} \vec{F} \cdot d\vec{r}$ es independiente del camino de integración en U si y solo si

$$\int_{\Gamma_1} \vec{F} \cdot d\vec{r} = \int_{\Gamma_2} \vec{F} \cdot d\vec{r}$$

Para cualquier par de curvas Γ_1 y Γ_2 en U que tengan los mismos extremos inicial y final.

Definición 3.0.3 (Conservativo) Sea U un subconjunto abierto y conexo de \mathbb{R}^n , diremos que el campo vectorial continuo $\vec{F}: U \to \mathbb{R}^n$, es conservativo en U si y solo si la integral $\int_{\Gamma_n} \vec{F} \cdot d\vec{r}$ es independiente del camino de integración en U.

Teorema 3.0.4 Sean $U \subset \mathbb{R}^n$ un subconjunto conexo y abierto, $f: U \to \mathbb{R}$ un campo escalar de clase C^1 tal que el campo $\vec{F} = \vec{\nabla} f$, entonces

$$\int_{\Gamma} \vec{F} \cdot d\vec{r} = f(B) - f(A)$$

para cualquier curva regular Γ contenida en U y de extremos A y B, "f" es llamada la función potencial del campo \vec{F} .

Definición 3.0.5 Diremos que un conjunto $U \subset \mathbb{R}^n$ es un conjunto conexo, si dados dos puntos arbitrarios $A, B \in U$, el segmento de recta que los une queda totalmente contenida en U.

Teorema 3.0.6 (Condición necesaria y suficiente para que un campo sea conservativo)

Sea U un subconjunto convexo abierto de \mathbb{R}^n y sea $\vec{F} = (F_1, F_2, \dots, F_n) : U \to \mathbb{R}^n$ un campo vectorial de clase C^1 en U, entonces el campo \vec{F} es conservativo en U si y solo si

$$\frac{\partial F_i}{\partial x_j}(P) = \frac{\partial F_j}{\partial x_i}(P)$$

Para todo $i, j \in \{1, 2, \dots, n\}$ y para todo $P = (x_1, x_2, \dots, x_n) \in U$.

3.1. Problemas resueltos

Ejercicio 3.1 En cada caso determine si el campo vectorial \vec{F} es o no conservativo. En caso afirmativo, halle una función potencial f

a)
$$F(x,y) = (3x^2y, x^3)$$

Solución:

Es claro que el dominio de \vec{F} es \mathbb{R}^2 , el cual es un conjunto convexo. Además $P(x,y)=3x^2y\ Q(x,y)=x^3$, de \vec{F} tienen derivadas parciales continuas de primer orden sobre \mathbb{R}^2

$$\frac{\partial P}{\partial y}(x,y) = 3x^2 = \frac{\partial Q}{\partial x} \text{ entonces el campo } \vec{F}\text{es conservativo en } I\!\!R^2.$$

Luego

$$\vec{F}(x,y) = \vec{\nabla} f(x,y)$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2y \implies f(x,y) = \int 3x^2y dx = x^3y + A(y)$$

derivando f respecto a y se tiene

$$\frac{\partial f}{\partial y}(x,y) = x^3 + A'(y) = x^3 \Rightarrow A(y) = C$$

luego la función buscada es de la forma

$$f(x,y) = x^3y + C$$

b)
$$\vec{F}(x,y) = (x,y)$$

Solución:

El dominio de \vec{F} es \mathbb{R}^2 , el cual es convexo

Además
$$P(x,y) = x$$
 y $Q(x,y) = y$ son continuas de clase C^1 y $\frac{\partial P}{\partial y} = 0 = \frac{\partial Q}{\partial x}$

entonces el campo \vec{F} es conservativo en $I\!\!R^2$

luego

$$\vec{F}(x,y) = \vec{\nabla}f(x,y)$$

$$\frac{\partial f}{\partial x}(x,y) = x \implies f(x,y) = \int x dx = \frac{x^2}{2} + A(y)$$

derivando f respecto a y se tiene

$$\frac{\partial f}{\partial y}(x,y) = A'(y) = y \implies A(y) = \frac{y^2}{2} + C$$

luego la función buscada es de la forma

$$f(x,y)\frac{1}{2} = (x^2 + y^2) + C$$

c)
$$\vec{F}(x, y, z) = (2xy^3, x^2z^3, 3x^2yz^2)$$

Solución:

El dominio de \vec{F} es \mathbb{R}^3 , el cual es convexo

Además

$$P(x,y,z) = 2xy^3$$
, $Q(x,y,z) = x^2z^3$ y $R(x,y,z) = 3x^2yz^2$ son continuas de clase C^1 y $\frac{\partial P}{\partial y}(x,y,z) = 6xy^2$; $\frac{\partial Q}{\partial x}(x,y,z) = 2xz^3 \Rightarrow \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$

entonces el campo \vec{F} no es conservativo en $I\!\!R^3$

d)
$$\vec{F}(x, y, z) = (z^2 + 1, 2z, 2xz + 2y)$$

Solución:

El dominio de \vec{F} es \mathbb{R}^3 , el cual es convexo

Además

$$P(x,y,z)=z^2+1,\,Q(x,y,z)=2z$$
 y $R(x,y,z)=2xz+2y$ son continuas de clase C^1 y

$$\frac{\partial P}{\partial y}(x,y,z) = 0 = \frac{\partial R}{\partial x}(x,y,z)$$

$$\frac{\partial P}{\partial z}(x,y,z) = 2z = \frac{\partial Q}{\partial x}(x,y,z)$$

$$\frac{\partial Q}{\partial z}(x,y,z) = 2 = \frac{\partial Q}{\partial x}(x,y,z)$$

Por lo tanto el campo \vec{F} es conservativo en $I\!\!R^3$ luego

$$\vec{F} = (P, Q, R) = \vec{\nabla} f = \left(\frac{\partial f}{\partial}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

$$\frac{\partial f}{\partial x}(x, y, z) = Z^2 + 1 \cdot \dots \cdot (1)$$

$$\frac{\partial f}{\partial y}(x, y, z) = 2Z \cdot \dots \cdot (2)$$

$$\frac{\partial f}{\partial z}(x, y, z) = 2xZ + 2y \cdot \dots \cdot (3)$$

integrando (1) respecto de x obtenemos $f(x, y, z) = (z^2 + 1)x + A(y, z)$, derivando respecto de y y comparando con (2), se tiene

$$2z = \frac{\partial f}{\partial y}(x, y, z) = \frac{\partial A}{\partial y}(y, z)$$

por lo tanto A(y, z) = 2yz + B(z)

luego

$$f(x, y, z) = (z^2 + 1)x + A(y, z) = z^2x + x + 2yz + B(z)$$

derivando respecto a z y comparando con (3), se tiene

$$\frac{\partial f}{\partial z} = 2zx + 2y + B'(y) = 2xz + 2y$$

por lo tanto B(z) = C. Luego, la función buscada es de la forma

$$f(x, y, z) = z^2x + x + 2yz + C$$

Ejercicio 3.2 En cada caso determine si el campo vectorial \vec{F} es o no conservativo. En caso afirmativo, halle una función potencial f.

a) $\vec{F}(x,y) = (e^x + y, x - \sin y)$

Solución:

El dominio de \vec{F} es \mathbb{R}^2 , el cual es un conjunto convexo. Además, $P(x,y) = e^x + y$ y $Q(x,y) = x - \sin y$ son continuas de clase C^1 en \mathbb{R}^2 . Verificamos la condición de conservatividad:

$$\frac{\partial P}{\partial y} = 1 = \frac{\partial Q}{\partial x}$$

Por lo tanto, \vec{F} es conservativo en \mathbb{R}^2 .

Buscamos la función potencial f(x, y):

$$\frac{\partial f}{\partial x} = e^x + y$$

Integrando respecto a x:

$$f(x,y) = e^x + xy + A(y)$$

Derivamos respecto a y y comparamos con Q(x, y):

$$\frac{\partial f}{\partial y} = x + A'(y) = x - \sin y$$

De donde:

$$A'(y) = -\sin y \Rightarrow A(y) = \cos y + C$$

Luego, la función potencial es:

$$f(x,y) = e^x + xy + \cos y + C$$

b) $\vec{F}(x, y, z) = (y + z, x + 2z, x + y)$

Solución:

El dominio de \vec{F} es \mathbb{R}^3 , que es un conjunto convexo. Las componentes son:

$$P(x, y, z) = y + z, \quad Q(x, y, z) = x + 2z, \quad R(x, y, z) = x + y$$

Verificamos las condiciones de conservatividad:

$$\frac{\partial P}{\partial y} = 1, \quad \frac{\partial Q}{\partial x} = 1$$

$$\frac{\partial P}{\partial z} = 1, \quad \frac{\partial R}{\partial x} = 1$$

$$\frac{\partial Q}{\partial z} = 2, \quad \frac{\partial R}{\partial y} = 1$$

Como $\frac{\partial Q}{\partial z} \neq \frac{\partial R}{\partial y}$, el campo no es conservativo en \mathbb{R}^3 .

3.2. Ejercicios Propuestos

Ejercicio 3.3 Determine si el campo vectorial \vec{F} es conservativo. En caso afirmativo, halle una función potencial f.

a)
$$\vec{F}(x,y) = (3x + 2y, 2x - y^3)$$

b)
$$\vec{F}(x,y) = (x^2y + \cos y, x^3 - y \sin y)$$

c)
$$\vec{F}(x, y, z) = (e^y + z, e^x + xz, xy + \cos z)$$

d)
$$\vec{F}(x, y, z) = (2x + yz, x + y^2, xy + z^2)$$

e)
$$\vec{F}(x,y) = (x+y,2y-x)$$

Capítulo 4

El teorema de Green

Teorema 4.0.1 Sea D una región acotada de \mathbb{R}^2 con frontera ∂D una curva cerrada simple, regular por partes y orientada positivamente respecto a D. Si $\vec{F}(x,y) = (P(x,y),Q(x,y))$ es un campo vectorial de clase C^1 sobre un conjunto abierto que contiene a D, entonces

$$\oint_{\partial D} P dx + Q dy = \int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

4.1. Aplicación

Sea D una región limitada por una curva Γ cerrada simple, regular por partes y orientada positivamente respecto a D, entonces el área A(D) de la región D puede ser calculada por cualquiera de la tres expresiones

$$A(D) = \frac{1}{2} \oint_{\Gamma} -y dx + x dy = \oint_{\Gamma} -y dx = \oint_{\Gamma} x dy$$

4.2. Problemas resueltos

Ejercicio 4.1 Usando el teorema de Green calcular

$$I = \oint_{\Gamma} (y^3 - xy^2 \sin xy) dx + (4xy^2 - x^2y \sin xy) dy$$

donde Γ es la curva $x^2 + 4y^2 - 16y + 12 = 0$ recorrida en sentido antihorario.

Solución:

$$P(x,y) = y^3 - xy^2 \sin xy; \quad Q(x,y) = 4xy^2 - x^2y \sin xy$$

$$\frac{\partial Q}{\partial x} = 4y^2 - y(2x \sin xy + x^2y \cos xy)$$

$$\frac{\partial P}{\partial y} = 3y^2 - x(2y \sin xy + y^2 x \cos xy)$$

luego

$$I = \int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{D} \int y^{2} dx dy$$

la región D está limitada por la elipse

$$x^{2} + 4y^{2} - 16y + 12 = 0$$

$$\iff x^{2} + 4(y^{2} - 4y + 4 - 4) = -12$$

$$\iff x^{2} + 4(y - 2)^{2} = 4$$

$$\iff \frac{x^{2}}{4} + \frac{(y - 2)^{2}}{1} = 1$$

Aplicando coordenadas polares

$$\begin{cases} x = 2r\cos t \\ y - 2 = r\sin\theta \end{cases}$$
; Jacobiano $J = 2r$

La nueva región sobre la cual se integra es:

$$E = \{(r, \theta) \in \mathbb{R}^2 / 0 \le r \le 1, \ 0 \le \theta \le 2\pi\}$$

luego

$$\int_{D} \int y^{2} dx dy = \int_{E} \int (2 + r \cos \theta)^{2} (2r) dr d\theta = \frac{17}{2} \pi$$

Ejercicio 4.2 Calcule la integral
$$\int_{\Gamma} (12x^2 \sin y + 3xy^2) dx + (4x^3 \cos y + 6x^2y) dy$$

donde Γ es la frontera del polígono de vertices (0,0), (3,0), (2,1), (1,1) recorrida en sentido antihorario.

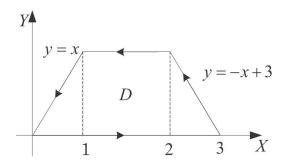
Solución:

 \vec{F} es de clase C^1 sobre \mathbb{R}^2 , pues sus funciones componentes, $P(x,y) = 12x^2 \operatorname{sen} y + 3xy^2$ y $Q(x,y) = 4x^3 \operatorname{cos} y + 6x^2 y$ tiene derivadas parciales continuas en \mathbb{R}^2 , donde

$$\frac{\partial P}{\partial x}(x,y) = 24x \sin y + 3y^2$$
 $\frac{\partial P}{\partial y}(x,y) = 12x^2 \cos y + 6xy$

$$\frac{\partial Q}{\partial x}(x,y) = 12x^2 \cos y + 12xy \qquad \frac{\partial Q}{\partial y}(x,y) = -4x^2 \sin y + 6x^2$$

Sea D la región limitada por Γ



luego por el teorema de Green:

$$\int_{\partial D} \vec{F} \cdot d\vec{r} = \int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$= \int_{D} \int 6xy dx dy$$

$$= \int_{0}^{1} \left(\int_{y}^{3-y} 6xy dx \right) dy$$

$$= \int_{0}^{1} \left(27y - 18y^{2} \right) dy$$

$$= \frac{15}{2}$$

Ejercicio 4.3 Encuentre el área de la región D limitada por la elipse

$$\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Solución:

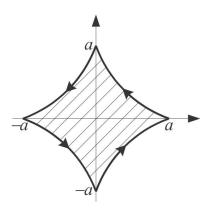
Parametrizamos la elipse por $\vec{r}(t) = (a\cos t, b\sin t), \ t\in [0,2\pi],$ luego

$$A(D) = \oint_{\Gamma} x dy = \int_{0}^{2\pi} (a\cos t)(b\cos t)dt$$
$$= ab \int_{0}^{2\pi} \cos^{2}(t)dt$$
$$= ab \frac{1}{2} \int_{0}^{2\pi} (1 + \cos(2t))dt$$
$$= ab \pi$$

Ejercicio 4.4 Calcule el área de la región D limitada por el astroide

$$\Gamma : \vec{r}(t) = \begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases} \quad para \ 0 \le t \le 2\pi \ y \ a > 0$$

Solución:



$$A(D) = \frac{1}{2} \oint_{\Gamma} -y dx + x dy$$

$$= \frac{1}{2} \int_{0}^{2\pi} (-a \operatorname{sen}^{3} t) d(a \operatorname{cos}^{3} t) + a \operatorname{cos}^{3} t d(a \operatorname{sen}^{3} t)$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[(-a \operatorname{sen}^{3} t) (3a \operatorname{cos}^{2} t) (-\operatorname{sen} t) + (a \operatorname{cos}^{3} t) (3a \operatorname{sen}^{2} t) (\cos t) \right] dt$$

$$= \frac{3}{2} a^{2} \int_{0}^{2\pi} \left(\cos^{4} t \operatorname{sen}^{2} t + \operatorname{sen}^{4} t \cos^{2} t \right) dt$$

$$= \frac{3}{2} a^{2} \int_{0}^{2\pi} \operatorname{sen}^{2} t \cos^{2} t dt$$

$$= \frac{3}{8} a^{2} \int_{0}^{2\pi} \operatorname{sen}(2t) dt$$

$$= \frac{3}{16} a^{2} \int_{0}^{2\pi} (1 - \cos(4t)) dt$$

$$= \frac{3}{16} a^{2} \left[t - \frac{1}{4} \operatorname{sen}(4t) \right]_{0}^{2\pi} = \frac{3}{8} a^{2} \pi$$

Ejercicio 4.5 Calcule el trabajo realizado por el campo de fuerzas $\vec{F}(x,y) = \left(ye^{xy}, \frac{1}{3}x^3y^2 + xe^{xy}\right)$ Para mover una sola vez, en sentido antihorario, una partícula a lo largo de la frontera de la región limitada por las gráficas de las ecuaciones xy = 4, xy = 1, y = 1 y y = 4.

Solución:

Las funciones

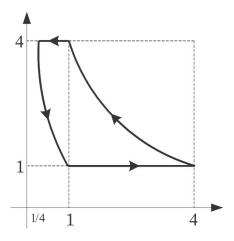
$$\frac{\partial P}{\partial x}(x,y) = y^2 e^{xy}, \quad \frac{\partial P}{\partial y}(x,y) = x^2 y^2 + e^{xy} + xy e^{xy}$$

$$\frac{\partial Q}{\partial x}(x,y) = e^{xy} + xye^{xy}, \quad \frac{\partial Q}{\partial y}(x,y) = \frac{2}{3}x^3y + x^2e^{xy}$$

son continuas en \mathbb{R}^2 . Por lo tanto,

$$\vec{F} = (P, Q)$$
 es de clase C^1 sobre $I\!\!R^2$

Des la región limitada por las gráficas de las ecuaciones $xy=4,\ xy=1,\ y=1$ y y=4 como se muestra en la figura



Luego, por el teorema de Green tenemos:

$$W = \int_{\partial D} \vec{F} \cdot d\vec{r} = \int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$= \int_{D} \int x^{2} y^{2} dx dy$$

$$= \int_{1}^{4} \left(\int_{1/y}^{4/y} x^{2} y^{2} dx \right) dy$$

$$= \int_{1}^{4} \left(\frac{1}{3} x^{3} y^{2} \Big|_{x=1/y}^{4/y} \right) dy$$

$$= \int_{1}^{4} \left(\frac{64}{y^{3}} - \frac{1}{y^{3}} \right) dy$$

$$= (21 \ln y) \Big|_{y=1}^{4} = 21 \ln 4$$

Ejercicio 4.6 Calcule $\int_{\Gamma} (1-y)dx + xdy$ donde Γ es la curva, orientada positivamente, que limita el triángulo de vertices A(0,0), B(0,1) y C(1,0)

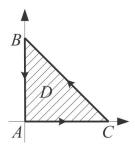
Solución:

$$P(x,y) = (1-y)$$
 $Q(x,y) = x$ las funciones

$$\frac{\partial P}{\partial x}(x,y) = 0, \quad \frac{\partial P}{\partial y}(x,y) = -1$$

$$\frac{\partial Q}{\partial x}(x,y) = 1, \quad \frac{\partial Q}{\partial y}(x,y) = 0$$

son continuas en \mathbb{R}^2 por lo tanto $\vec{F} = (P, Q)$ es de clase \mathbb{C}^1 sobre \mathbb{R}^2



luego, por el teorema de Green, tenemos:

$$\int_{\Gamma} (1-y)dx + xdy = \int_{D} \int (1+1)dxdy$$

$$= 2\int_{D} \int dxdy$$

$$= 2\int_{0}^{1} \left(\int_{0}^{1-y} dx\right)dy$$

$$= 2\int_{0}^{1} (1-y)dy$$

$$= 2\left(y - \frac{y^{2}}{2}\right)\Big|_{0}^{1} = 1$$

Ejercicio 4.7 Usando el teorema de Green calcule la integral de línea $\oint_{\Gamma} \vec{F} \cdot d\vec{r}$, donde $\vec{F}(x,y) = -3x^2yi + 3xy^2j$ y Γ la circunferencia $x^2 + y^2 - 4y = 0$ orientada en el sentido positivo.

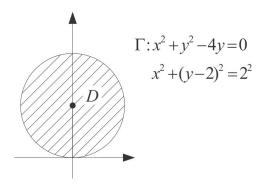
Solución:

las funciones

$$\frac{\partial P}{\partial x}(x,y) = -6xy, \quad \frac{\partial P}{\partial y}(x,y) = -3x^2$$

$$\frac{\partial Q}{\partial x}(x,y) = 3y^2, \quad \frac{\partial Q}{\partial y}(x,y) = 6xy$$

son continuas en $I\!\!R^2$ por lo tanto $\vec{F}=(P,Q)$ es de clase C^1 sobre $I\!\!R^2$



luego, por el teorema de Green, tenemos:

$$\oint_{\Gamma} \vec{F} \cdot d\vec{r} = \int_{D} \int (3y^2 + 3x^2) dx dy$$

4.3. Ejercicios Propuestos

Ejercicio 4.8 Usando el Teorema de Green, evalúe la integral de línea:

$$\oint_{\Gamma} (x^{2}y + y^{3})dx + (xy^{2} - y^{4})dy$$

donde Γ es la frontera del triángulo con vértices (0,0),(3,0),(3,4), orientada en sentido antihorario.

Ejercicio 4.9 Calcule la circulación del campo vectorial

$$\vec{F}(x,y) = (ye^x, x^2e^y)$$

alrededor de la elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, recorrida en sentido positivo.

Ejercicio 4.10 Encuentre el área de la región limitada por la cardioide dada en coordenadas polares por:

$$r = 2(1 + \cos \theta)$$

utilizando el Teorema de Green.

Ejercicio 4.11 Determine si el campo vectorial

$$\vec{F}(x,y) = (x^3y^2, y^3x^2)$$

es conservativo en \mathbb{R}^2 . En caso negativo, calcule la circulación a lo largo del círculo $x^2 + y^2 = 1$ orientado positivamente.

Ejercicio 4.12 Calcule la integral de línea

$$\oint_{\Gamma} (x^2 + y^2)dx + (2xy + \cos y)dy$$

donde Γ es el cuadrado de vértices (0,0),(2,0),(2,2),(0,2), orientado en sentido antihorario.

Ejercicio 4.13 Usando el Teorema de Green, determine el área de la región encerrada por la hipérbola xy = 1 y las rectas x = 1 y x = 3.

Ejercicio 4.14 Calcule el área de la región limitada por la parábola $y = x^2$ y la recta y = 4 usando el Teorema de Green.

Ejercicio 4.15 Determine la circulación del campo vectorial

$$\vec{F}(x,y) = (-y^2, x^2)$$

sobre la frontera de la región delimitada por la circunferencia $x^2 + y^2 = 4$.

Ejercicio 4.16 Calcule el área encerrada por la superelipse dada por la ecuación:

$$x^{4/3} + y^{4/3} = 1$$

usando el Teorema de Green.

Ejercicio 4.17 Utilizando el Teorema de Green, evalúe el trabajo realizado por el campo de fuerzas

$$\vec{F}(x,y) = (2xy, x^2 - y)$$

para mover una partícula a lo largo de la frontera del triángulo de vértices (0,0), (4,0), (4,4) en sentido positivo.

Ejercicio 4.18 Evalúe la integral de línea

$$\oint_{\Gamma} (x^3 - y)dx + (y^3 + x)dy$$

donde Γ es la frontera del rectángulo con vértices (0,0),(3,0),(3,2),(0,2), orientado en sentido positivo.

Ejercicio 4.19 Determine el área encerrada por la región comprendida entre la circunferencia $x^2 + y^2 = 4$ y la cardioide $r = 2(1 + \cos \theta)$ usando el Teorema de Green.

Ejercicio 4.20 Calcule la integral de línea

$$\oint_{\Gamma} (x^2y - y^2)dx + (xy^2 + x)dy$$

donde Γ es la frontera del círculo $x^2 + y^2 = 9$, orientado positivamente.

Ejercicio 4.21 Usando el Teorema de Green, encuentre el área de la región encerrada por la astroidal parametrizada por:

$$x = a\cos^3 t, \quad y = a\sin^3 t, \quad 0 \le t \le 2\pi.$$

Ejercicio 4.22 Calcule el trabajo realizado por el campo de fuerzas

$$\vec{F}(x,y) = (y\sin x, x^2 + e^y)$$

cuando una partícula se mueve a lo largo de la curva Γ que es la frontera del polígono con vértices en (0,0),(2,0),(2,3),(0,3) en sentido antihorario.

Ejercicio 4.23 Verifique si el campo vectorial

$$\vec{F}(x,y) = (y\cos x, x\sin y)$$

es conservativo. En caso contrario, calcule la circulación sobre el círculo unitario $x^2 + y^2 = 1$ en sentido positivo.

Ejercicio 4.24 Usando el Teorema de Green, evalúe la integral de línea

$$\oint_{\Gamma} (3x^2 - y)dx + (4xy + x)dy$$

donde Γ es la frontera del cuadrado con vértices (0,0),(1,0),(1,1),(0,1) orientado en sentido positivo.

Ejercicio 4.25 Determine el área de la región encerrada por la curva lemniscata de Bernoulli dada en coordenadas polares por:

$$r^2 = a^2 \cos(2\theta)$$

utilizando el Teorema de Green.

Ejercicio 4.26 Utilizando el Teorema de Green, calcule la circulación del campo vectorial

$$\vec{F}(x,y) = (x^3 - y^2, y^3 + x^2)$$

alrededor de la frontera de la región comprendida entre las circunferencias $x^2 + y^2 = 1$ y $x^2 + y^2 = 4$.

Capítulo 5

Integrales de Superficie

5.1. Superficie parametrizada

Una superficie parametrizada, es una aplicación

```
\vec{\sigma}: \quad D \subset I\!\!R^2 \to I\!\!R^3 \\ (u,v) \mapsto \sigma(u,v) = ((x(u,v),y(u,v),z(u,v))) \\ \text{donde } D \text{ es el dominio de la aplicación} \vec{\sigma}
```

- * La imagen del conjunto D mediante sigma, esto es $\vec{\sigma}(D)$ es la superficie $S \subset \mathbb{R}^3$.
- * La superficie S es de clase C^1 , si la aplicación σ es de clase C^1 .
- * Se dice que la aplicación σ es de clase C^1 , cuando la aplicación $\vec{\sigma}$ y sus derivadas parciales $\vec{\sigma_u}$ y $\vec{\sigma_v}$ son continuos en D.

5.2. Superficie regular

Se dice que una superficie S, parametrizada por la aplicación $\vec{\sigma}: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ $(u,v) \mapsto \sigma(u,v) = \vec{r}(u,v)$ es regular si $\vec{\sigma_u} \times \vec{\sigma_v} \neq \vec{0}$ para todo $(u,v) \in D$.

5.3. Integrales de superficie de campos escalares

Sea S una superficie regular parametrizada por $\vec{\sigma}: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, donde D es cerrada y acotada en \mathbb{R}^2 $(u,v) \mapsto \sigma(u,v)$ Sea $f: S \subset \mathbb{R}^3 \to \mathbb{R}$ una aplicación continua. La integral de superficie de un campo escalar sobre S denotada por $\int_S \int f ds$ se define como

$$\int_{S} \int f ds = \int_{D} \int f(\sigma(u, v)) ||\vec{N}(u, v)|| du dv$$

donde $\vec{N}(u,v) = \vec{\sigma_u}(u,v) \times \vec{\sigma_v}(u,v)$

Observación

En el caso que S sea una superficie regular por partes la integral $\int_S \int f ds$ se define como la suma de las integrales de superficie sobre cada parte regular de S, es decir, si la superficie $S = S_1 \cup S_2 \cup \cdots \cup S_m$, entonces

$$\int_{S} \int f ds = \int_{S_1} \int f ds_1 + \int_{S_2} \int f ds_2 \cdots \int_{S_m} \int f ds_m$$

5.4. Aplicaciones de la integral de superficie de un campo escalar

Si la superficie S representa una lamina y $f:D\subset \mathbb{R}^3\to \mathbb{R}$ es una función continua que representa la densidad de dicha lamina, siendo D un subconjunto abierto de \mathbb{R}^3 , entonces definimos:

1.- Masa de una lámina

$$M(s) = \int_{s} \int f ds$$

Si f(x, y, z) = 1, para cada $(x, y, z) \in U$, entonces M(s) es numéricamente el área de la superficie.

2.- Centro de Masa de una lámina

El centro de masa M de la lámina S tiene coordenadas $(\vec{x}, \vec{y}, \vec{z})$, donde

$$\vec{x} = \frac{1}{M} \int_{s} \int x f ds, \ \vec{y} = \frac{1}{M} \int_{s} \int y f ds, \ \vec{z} = \frac{1}{M} \int_{s} \int z f ds$$

5.5. Área de una superficie

Sea $\vec{\sigma}$: $D \subset \mathbb{R}^2 \to \mathbb{R}^3$ $(u, v) \mapsto \vec{\sigma}(u, v) = ((x(u, v), y(u, v), z(u, v)))$

es la parametrización de una superficie S que está acotado sobre la región cerrada y acotada D, el área de superficie A(s), se define por

$$A(S) = \int_{D} \int ds$$
, donde $ds = ||\vec{\sigma}_{u} \times \vec{\sigma}_{v}||dudv$

Observación Si una superficie S es la gráfica de la función z = f(x, y), que está definido sobre el conjunto $D \subset \mathbb{R}^2$, que es cerrado y acotado, tal que D es la proyección de Gr(f) sobre el plano XY, entonces el área de la superficie S es dada por

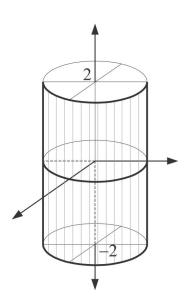
$$A(s) = \int_{D} \int \sqrt{1 + f_x^2 + f_y^2} dx dy$$

5.6. Problemas resueltos

Ejercicio 5.1 Calcular la integral $\int_{S} \int x^2 z dS$

Siendo S la superficie externa $x^2+y^2=a^2$ comprendida entre z=2 y z=-2

Solución:



Parametrizando la superficie

$$\begin{cases} x = a \cos u \\ y = a \sin u; & 0 \le u \le 2\pi; \ -2 \le v \le 2 \\ z = v & D = \{(u, v)/0 \le u \le 2\pi, \ -2 \le v \le 2 \} \end{cases}$$

luego $\vec{\sigma}(u, v) = (a \cos u, a \sin u, v)$

entonces
$$\frac{\partial r}{\partial u} = (-a \operatorname{sen} u, a \cos u, 0), \quad \frac{\partial r}{\partial v} = (0, 0, 1)$$

$$\vec{N}(u,v) = \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -a \sin u & a \cos u & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\vec{N}(u, v) = (a \cos u, a \sin u, 0), \quad ||\vec{N}|| = a$$

$$\Rightarrow \int_{S} \int x^{2}z dS = \int_{D} \int a^{3}v \cos^{2}u du dv$$

$$= a^{3} \int_{0}^{2\pi} \left[\int_{-2}^{2} v \cos^{2}dv \right] du$$

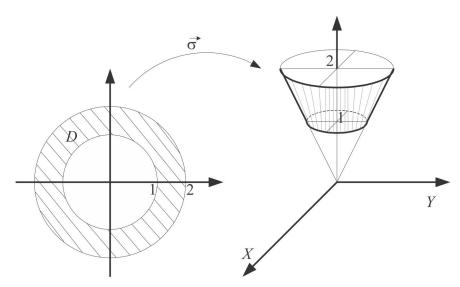
$$= a^{3} \int_{0}^{2\pi} \cos^{2}u \left[\frac{v^{2}}{2} \right]_{2}^{2} du = 0$$

Ejercicio 5.2 Calcule $\int_S \int x^3 z dS$, siendo S la porción de la superficie cónica $z^2 = x^2 + y^2$ que se encuentra entre los planos z = 1 y z = 2

Solución:

Como $z \leq 0,$ la porción de superficie cónica puede ser considerado como el gráfico de una función

$$z = g(x,y) = \sqrt{x^2 + y^2}$$
, donde $(x,y) \in D = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$



$$\int_{S} \int f(x,y,z)dS = \int_{D} \int f(x,y,g(x,y))\sqrt{1(g_{x})^{2} + (g_{y})^{2}}dxdy$$

$$= \int_{D} \int x^{3}\sqrt{x^{2} + y^{2}}\sqrt{1 + \frac{x^{2}}{x^{2} + y^{2}} + \frac{y^{2}}{x^{2} + y^{2}}}dxdy$$

$$= \sqrt{2} \int_{D} \int x^{3}\sqrt{x^{2} + y^{2}}dxdy$$

pasando a coordenadas polares $\left\{ \begin{array}{ll} x=r\cos\theta; & 1\leq r\leq 2\\ y=r\sin\theta, & 0\leq \theta\leq 2\pi \end{array} \right.$

obtenemos

$$\int_{S} \int f(x, y, z) dS = \sqrt{2} \int_{0}^{2\pi} \int_{1}^{2} r^{5} \cos^{3}\theta dr d\theta$$

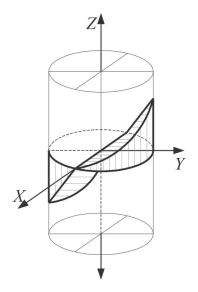
$$= \sqrt{2} \left(\int_{0}^{2\pi} \cos^{3}\theta d\theta \right) \left(\int_{1}^{2} r^{5} dr \right)$$

$$= \sqrt{2} \left(\int_{0}^{2\pi} (\cos \theta - \sin^{2}\theta \cos \theta) \theta \right) \left(\frac{1}{6} r^{6} \right)_{1}^{2}$$

$$= 0$$

Ejercicio 5.3 Dado el recinto limitado por los planos $z=y,\ z=0$ y el cilindro $x^2+y^2=a^2$. Calcular el área de la porción de superficie cilíndrico comprendido entre los dos planos

Solución:



El cilindro $x^2 + y^2 = a^2$

$$\left. \begin{array}{l} x = a \cos u \\ y = a \sin u \\ z = v \end{array} \right\} \Rightarrow \begin{array}{l} r(u, v) = (a \cos u, a \sin u, v) \\ \theta \le u \le \pi; \ 0 \le v \le a \sin u \end{array}$$

$$\sigma(u,v) = (a\cos u, a\sin u, v)$$

De esta manera $S=\sigma(D)$ es la mitad de la superficie que se describe en el enunciado porque solo consideramos la porción del cilindro $z\geq 0$

$$\frac{\partial \sigma}{\partial u} = (-a \operatorname{sen} u, a \cos u, 0)$$

$$\frac{\partial \sigma}{\partial v} = (0, 0, 1)$$

$$\Rightarrow N(u, v) = \frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -a \operatorname{sen} u & a \cos u & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\Rightarrow \vec{N}(u, v) = (a \cos u, a \operatorname{sen} u, 0)$$

$$\Rightarrow ||\vec{N}|| = a$$

$$A(S) = \int_{D} \int a du dv$$

$$= \int_{0}^{\pi} \left(\int_{0}^{a \sin u} a dv \right) du$$

$$= \int_{0}^{\pi} a^{2} \sin u du$$

$$= -a^{2} \cos u \Big|_{0}^{\pi} = 2a^{2}$$

Por lo tanto el área es el doble de S y es:

 $4a^2$

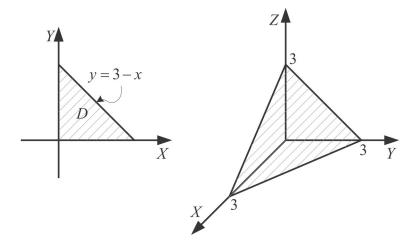
Ejercicio 5.4 Calcular la masa de la porción del plano x + y + z = 3 ubicada en el primer secante si la densidad superficial en cualquier punto del plano es $2x^2$

Solución:

$$x + y + z = 3 \implies z = g(x, y) = 3 - x - y; \ (x, y) \in D$$

Donde D es obtenida al proyectar la superficie sobre el plano XY, esto es

$$D = \{(x, y) \in \mathbb{R}^2: 0 \le x \le 3, 0 \le y \le 3 - x\}$$



Luego

$$M(S) = \int_{S} \int 2x^{2} dS$$

$$= \int_{D} \int 2x^{2} \sqrt{1(g_{x})^{2} + (g_{y})^{2}} dx dy$$

$$= 2\sqrt{3} \int_{0}^{3} \left(\int_{0}^{3-x} x^{2} dy \right) dy$$

$$= 2\sqrt{3} \int_{0}^{3} (3x^{2} - x^{3}) dx$$

$$= \frac{27\sqrt{3}}{2}$$

Ejercicio 5.5 Hallar el área del cono $z=\sqrt{x^2+y^2}$ para $0\leq z\leq a$

Solución:

Parametrizando el como $S:\ z=\sqrt{x^2+y^2}$

$$\begin{cases} x = r \cos \theta; & 0 \le \theta \le 2\pi \\ y = r \sin \theta; & 0 \le r \le a \\ z = r \end{cases}$$

luego $S:\ \sigma(r,\theta)=(\cos\theta,\sin\theta,r),$ donde

$$\frac{\partial \sigma}{\partial r} = (\cos \theta, \sin \theta, 1)$$

$$\frac{\partial \sigma}{\partial \theta} = (-r \sin \theta, r \cos \theta, 0)$$

$$\Rightarrow \frac{\partial \sigma}{\partial r} \times \frac{\partial \sigma}{\partial \theta} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos \theta & \sin \theta & 1 \\ -r \sin \theta & r \cos \theta & 0 \end{vmatrix}$$
$$= (-r \cos \theta, -r \sin \theta, r)$$
$$N(r, \theta) = ||\vec{\sigma}_r \times \vec{\sigma}_\theta|| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta + r^2} = \sqrt{2}r$$

$$A(S) = \int_{S} \int dS$$

$$= \int_{D} \int ||\vec{\sigma}_{r} \times \vec{\sigma}_{\theta}|| d\theta dr$$

$$= \int_{D} \int \sqrt{2}r d\theta dr$$

$$= \sqrt{2} \int_{0}^{2\pi} \left(\int_{0}^{a} r dr \right) d\theta$$

$$= \sqrt{2}\pi a^{2}$$

Ejercicio 5.6 Hallar el área de la superficie lateral del cilindro $x^2 + y^2 = a^2$ para $0 \le z \le h$.

Solución:

Parametrizando el cilindro $S: x^2 + y^2 = a^2$

$$\begin{cases} x = a\cos\theta; & 0 \le \theta \le 2\pi \\ y = a\sin\theta; & 0 \le z \le h \\ z = z \end{cases}$$

Luego $S:\ \sigma(\theta,z)=(a\cos\theta,a\sin\theta,z),$ donde

$$\frac{\partial \sigma}{\partial \theta} = (-a \sin \theta, a \cos \theta, 0)$$

$$\frac{\partial \sigma}{\partial z} = (0, 0, 1)$$

$$\frac{\partial \sigma}{\partial \theta} \times \frac{\partial \sigma}{\partial z} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -a \sec \theta & a \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= (a \cos \theta, a \sec \theta, 0)$$

$$N(\theta, z) = ||\vec{\sigma}_{\theta} \times \vec{\sigma}_{z}|| = \sqrt{a^{2} \cos^{2} \theta + a^{2} \sin^{2} \theta} = a$$

$$A(S) = \int_{S} \int dS$$
$$= \int_{0}^{2\pi} \int_{0}^{h} a \, dz d\theta$$
$$= 2\pi a h$$

Ejercicio 5.7 Hallar el área de la superficie de la esfera $x^2 + y^2 + z^2 = a^2$ en la región 0 < z < a.

Solución:

Parametrizando la semiesfera en coordenadas esféricas:

$$\begin{cases} x = a \operatorname{sen} \phi \cos \theta; & 0 \le \theta \le 2\pi \\ y = a \operatorname{sen} \phi \operatorname{sen} \theta; & 0 \le \phi \le \frac{\pi}{2} \\ z = a \cos \phi \end{cases}$$

$$\frac{\partial \sigma}{\partial \phi} = (a \cos \phi \cos \theta, a \cos \phi \operatorname{sen} \theta, -a \operatorname{sen} \phi)$$

$$\frac{\partial \sigma}{\partial \theta} = (-a \operatorname{sen} \phi \operatorname{sen} \theta, a \operatorname{sen} \phi \cos \theta, 0)$$

$$\frac{\partial \sigma}{\partial \phi} \times \frac{\partial \sigma}{\partial \theta} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a \cos \phi \cos \theta & a \cos \phi \operatorname{sen} \theta & -a \operatorname{sen} \phi \\ -a \operatorname{sen} \phi \operatorname{sen} \theta & a \operatorname{sen} \phi \cos \theta & 0 \end{vmatrix}$$

$$= (a^2 \operatorname{sen}^2 \phi \cos \theta, a^2 \operatorname{sen}^2 \phi \operatorname{sen} \theta, a^2 \operatorname{sen} \phi \cos \phi)$$

 $N(\phi, \theta) = ||\vec{\sigma}_{\phi} \times \vec{\sigma}_{\theta}|| = a^2 \operatorname{sen} \phi$

$$A(S) = \int_{S} \int dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} a^{2} \sin \phi d\phi d\theta$$

$$= 2\pi a^{2}$$

Ejercicio 5.8 Hallar el área de la superficie lateral del paraboloide $z=x^2+y^2$ para $0 \le z \le a$.

Solución:

Parametrizando el paraboloide en coordenadas cilíndricas:

$$\begin{cases} x = r \cos \theta; & 0 \le \theta \le 2\pi \\ y = r \sin \theta; & 0 \le r \le \sqrt{a} \\ z = r^2 \end{cases}$$

$$\frac{\partial \sigma}{\partial r} = (\cos \theta, \sin \theta, 2r)$$

$$\frac{\partial \sigma}{\partial \theta} = (-r \sin \theta, r \cos \theta, 0)$$

$$\frac{\partial \sigma}{\partial r} \times \frac{\partial \sigma}{\partial \theta} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos \theta & \sin \theta & 2r \\ -r \sin \theta & r \cos \theta & 0 \end{vmatrix}$$

$$= (-2r^2 \cos \theta, -2r^2 \sin \theta, r)$$

$$N(r, \theta) = ||\vec{\sigma}_r \times \vec{\sigma}_\theta|| = \sqrt{4r^4 + r^2} = r\sqrt{4r^2 + 1}$$

$$A(S) = \int_{S} \int dS$$

$$= \int_{0}^{2\pi} \int_{0}^{\sqrt{a}} r\sqrt{4r^{2} + 1} dr d\theta$$

$$= 2\pi \int_{0}^{\sqrt{a}} r\sqrt{4r^{2} + 1} dr$$

Ejercicio 5.9 Hallar el área de la esfera de radio a, definida por $x^2 + y^2 + z^2 = a^2$.

Solución:

Parametrizando la esfera S en coordenadas esféricas:

$$\begin{cases} x = a \sin \phi \cos \theta; & 0 \le \theta \le 2\pi \\ y = a \sin \phi \sin \theta; & 0 \le \phi \le \pi \\ z = a \cos \phi \end{cases}$$

Luego se calculan los vectores tangentes, su producto cruz y su norma, obteniendo:

$$A(S) = \int_{S} \int dS$$
$$= \int_{0}^{2\pi} \int_{0}^{\pi} a^{2} \sin \phi d\phi d\theta$$
$$= 4\pi a^{2}$$

Ejercicio 5.10 Hallar el área de la superficie lateral del cilindro $x^2 + y^2 = a^2$ para $0 \le z \le h$.

Solución:

Parametrizando el cilindro en coordenadas cilíndricas:

$$\begin{cases} x = a\cos\theta; & 0 \le \theta \le 2\pi \\ y = a\sin\theta; & 0 \le z \le h \\ z = z \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_{S} \int dS$$
$$= \int_{0}^{2\pi} \int_{0}^{h} a dz d\theta$$
$$= 2\pi a h$$

Ejercicio 5.11 Hallar el área de la superficie lateral del cilindro inclinado definido por $x^2 + y^2 = a^2$ para $0 \le z \le bx$.

Solución:

Parametrizando el cilindro inclinado en coordenadas cilíndricas:

$$\begin{cases} x = a\cos\theta; & 0 \le \theta \le 2\pi \\ y = a\sin\theta; & 0 \le z \le ba\cos\theta \\ z = bx \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_{S} \int dS$$

$$= \int_{0}^{2\pi} \int_{0}^{ba\cos\theta} adzd\theta$$

$$= a \int_{0}^{2\pi} (ba\cos\theta)d\theta$$

$$= 0$$

Ejercicio 5.12 Hallar el área de la superficie lateral del toro generado por la rotación del círculo $(x - R)^2 + z^2 = r^2$ alrededor del eje z.

Solución:

Parametrizando el toro en coordenadas toroides:

$$\begin{cases} x = (R + r\cos\theta)\cos\phi; & 0 \le \phi \le 2\pi \\ y = (R + r\cos\theta)\sin\phi; & 0 \le \theta \le 2\pi \\ z = r\sin\theta \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_0^{2\pi} \int_0^{2\pi} (R + r \cos \theta) r d\theta d\phi$$
$$= 4\pi^2 Rr$$

Ejercicio 5.13 Hallar el área de la superficie lateral del paraboloide $z=x^2+y^2$ para $0 \le z \le a$.

Solución:

Parametrizando el paraboloide en coordenadas cilíndricas:

$$\begin{cases} x = r\cos\theta; & 0 \le \theta \le 2\pi \\ y = r\sin\theta; & 0 \le r \le \sqrt{a} \\ z = r^2 \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_0^{2\pi} \int_0^{\sqrt{a}} r\sqrt{4r^2 + 1} dr d\theta$$

Ejercicio 5.14 Hallar el área de la superficie lateral del hiperboloide de una hoja $x^2 + y^2 - z^2 = a^2$, para $-h \le z \le h$.

Solución:

Parametrizando en coordenadas hiperbólicas:

$$\begin{cases} x = a \cosh u \cos v; & 0 \le v \le 2\pi \\ y = a \cosh u \sin v; & 0 \le u \le h/a \\ z = a \sinh u; \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_0^{2\pi} \int_0^{h/a} a^2 \cosh u du dv$$
$$= 2\pi a^2 (\sinh(h/a))$$

Ejercicio 5.15 Hallar el área de la banda esférica de la esfera $x^2 + y^2 + z^2 = a^2$ comprendida entre z = h y z = -h.

Solución:

Usando coordenadas esféricas:

$$\begin{cases} x = a \sin \phi \cos \theta; & 0 \le \theta \le 2\pi \\ y = a \sin \phi \sin \theta; & \phi_1 \le \phi \le \phi_2 \\ z = a \cos \phi; \end{cases}$$

Calculando el diferencial de área:

$$A(S) = \int_0^{2\pi} \int_{\phi_1}^{\phi_2} a^2 \sin \phi d\phi d\theta$$
$$= 2\pi a^2 (\cos \phi_1 - \cos \phi_2)$$

Ejercicio 5.16 Hallar el volumen del cono $z = \sqrt{x^2 + y^2}$ para $0 \le z \le a$.

Solución:

Parametrizando el volumen en coordenadas cilíndricas:

$$\begin{cases} x = r\cos\theta; & 0 \le \theta \le 2\pi \\ y = r\sin\theta; & 0 \le r \le a \\ z = z & 0 \le z \le r \end{cases}$$

$$V = \int_{V} \int dV$$
$$= \int_{0}^{2\pi} \int_{0}^{a} \int_{0}^{r} r dz dr d\theta$$
$$= \frac{1}{3} \pi a^{3}$$

Ejercicio 5.17 Hallar el área de la parábola de revolución $z=x^2+y^2$ para $0\leq z\leq a$.

Solución:

Parametrizando en coordenadas cilíndricas:

$$\begin{cases} x = r\cos\theta; & 0 \le \theta \le 2\pi \\ y = r\sin\theta; & 0 \le r \le \sqrt{a} \\ z = r^2 \end{cases}$$

$$A(S) = \int_{S} \int dS$$
$$= \int_{0}^{2\pi} \int_{0}^{\sqrt{a}} (1 + 4r^{2})^{\frac{1}{2}} r dr d\theta$$

Ejercicio 5.18 Hallar el volumen de la región encerrada entre la esfera $x^2+y^2+z^2=a^2$ y el cono $z^2=x^2+y^2$.

Solución:

Usando coordenadas esféricas:

$$\begin{cases} x = \rho \sin \phi \cos \theta; & 0 \le \theta \le 2\pi \\ y = \rho \sin \phi \sin \theta; & 0 \le \phi \le \pi/4 \\ z = \rho \cos \phi; & 0 \le \rho \le a \end{cases}$$

$$V = \int_0^{2\pi} \int_0^{\pi/4} \int_0^a \rho^2 \sin \phi d\rho d\phi d\theta$$
$$= \frac{\pi a^3}{6}$$

Ejercicio 5.19 Hallar el área de la superficie generada por la intersección del paraboloide $z = x^2 + y^2$ y el plano z = h.

Solución:

Parametrizando la superficie en coordenadas cilíndricas:

$$\begin{cases} x = r\cos\theta; & 0 \le \theta \le 2\pi \\ y = r\sin\theta; & 0 \le r \le \sqrt{h} \\ z = r^2 \end{cases}$$

$$A(S) = \int_0^{2\pi} \int_0^{\sqrt{h}} \sqrt{1 + 4r^2} r dr d\theta$$

Ejercicio 5.20 Calcular el volumen del toroide definido por la revolución del círculo $(x-R)^2 + z^2 = r^2$ alrededor del eje z.

Solución:

Parametrizando en coordenadas toroides:

$$\begin{cases} x = (R + r\cos\theta)\cos\phi; & 0 \le \phi \le 2\pi \\ y = (R + r\cos\theta)\sin\phi; & 0 \le \theta \le 2\pi \\ z = r\sin\theta; \end{cases}$$

$$V = \int_0^{2\pi} \int_0^{2\pi} (R + r\cos\theta) r d\theta d\phi$$
$$= 2\pi^2 R r^2$$

Ejercicio 5.21 Determinar el área de la superficie del hiperboloide de una hoja $x^2 + y^2 - z^2 = a^2$, para $-h \le z \le h$.

Solución:

Parametrizando en coordenadas hiperbólicas:

$$\begin{cases} x = a \cosh u \cos v; & 0 \le v \le 2\pi \\ y = a \cosh u \sin v; & 0 \le u \le h/a \\ z = a \sinh u; \end{cases}$$

$$A(S) = \int_0^{2\pi} \int_0^{h/a} a^2 \cosh u du dv$$
$$= 2\pi a^2 (\sinh(h/a))$$

Ejercicio 5.22 Calcular el volumen del elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Solución:

Usando coordenadas elipsoidales:

$$\begin{cases} x = a \sin \theta \cos \phi; & 0 \le \phi \le 2\pi \\ y = b \sin \theta \sin \phi; & 0 \le \theta \le \pi \\ z = c \cos \theta; \end{cases}$$

$$V = \int_0^{2\pi} \int_0^{\pi} \int_0^1 abc \sin\theta d\rho d\theta d\phi$$
$$= \frac{4}{3}\pi abc$$

Ejercicio 5.23 Hallar el área de la banda esférica de la esfera $x^2 + y^2 + z^2 = a^2$ comprendida entre z = h y z = -h.

Solución:

Usando coordenadas esféricas:

$$\begin{cases} x = a \sin \phi \cos \theta; & 0 \le \theta \le 2\pi \\ y = a \sin \phi \sin \theta; & \phi_1 \le \phi \le \phi_2 \\ z = a \cos \phi; \end{cases}$$

$$A(S) = \int_0^{2\pi} \int_{\phi_1}^{\phi_2} a^2 \sin \phi d\phi d\theta$$
$$= 2\pi a^2 (\cos \phi_1 - \cos \phi_2)$$

5.7. Ejercicios Propuestos

Ejercicio 5.24 Calcular la integral de superficie $\int_S \int (x^2 + y^2) dS$, siendo S la porción de la esfera $x^2 + y^2 + z^2 = 4$ para $z \ge 0$.

Ejercicio 5.25 Calcule el área de la banda esférica definida en la esfera $x^2+y^2+z^2=a^2$ entre los planos z=h y z=-h.

Ejercicio 5.26 Calcule la integral de superficie $\int_S \int (x+y+z)dS$ en la parte superior del paraboloide $z=x^2+y^2$, con $0 \le z \le 4$.

Ejercicio 5.27 Hallar el área de la superficie del cilindro $x^2 + y^2 = 4$ comprendida entre los planos z = 0 y z = 5.

Ejercicio 5.28 Calcule la integral de superficie $\int_S \int xydS$, donde S es el hemisferio de la esfera $x^2 + y^2 + z^2 = 9$ con $z \ge 0$.

Ejercicio 5.29 Hallar el área del paraboloide $z = x^2 + y^2$ comprendido entre $0 \le z \le a$.

Ejercicio 5.30 Calcule la integral de superficie $\int_S \int (x^2 + y^2) dS$ sobre la parte de la esfera $x^2 + y^2 + z^2 = 16$ comprendida entre z = 2 y z = 4.

Ejercicio 5.31 Hallar el área de la banda esférica definida por la esfera $x^2+y^2+z^2=25$ comprendida entre los planos z=3 y z=-3.

Ejercicio 5.32 Hallar el área de la superficie lateral del hiperboloide de una hoja $x^2 + y^2 - z^2 = 1$ comprendido entre z = -2 y z = 2.

Ejercicio 5.33 Hallar el volumen del toro generado por la rotación del círculo $(x - R)^2 + z^2 = r^2$ alrededor del eje z.

Ejercicio 5.34 Calcular la integral de superficie $\int_S \int z^3 dS$, donde S es la porción del cono $z = \sqrt{x^2 + y^2}$ comprendido entre $1 \le z \le 3$.

Ejercicio 5.35 Calcule el área de la parte del paraboloide $z=x^2+y^2$ comprendido entre z=0 y z=4.

Ejercicio 5.36 Calcule la integral de superficie $\int_S \int (x+y)dS$ donde S es la superficie lateral del cilindro $x^2 + y^2 = 9$ entre los planos z = 0 y z = 5.

Ejercicio 5.37 Calcular la integral $\int_S \int x^3 y^2 z dS$ sobre la parte de la esfera $x^2 + y^2 + z^2 = 4$ situada en el primer octante.

Ejercicio 5.38 Hallar el volumen de la región encerrada entre la esfera $x^2+y^2+z^2=16$ y el cono $z=\sqrt{x^2+y^2}$.

Ejercicio 5.39 Hallar el área de la superficie lateral del paraboloide $z=x^2+y^2$ comprendido entre $0 \le z \le 9$.

Ejercicio 5.40 Calcular la masa de la porción de la esfera $x^2 + y^2 + z^2 = 25$ comprendida en el primer octante, si la densidad superficial es $\rho(x, y, z) = x + y + z$.

Ejercicio 5.41 Hallar el área de la superficie del cono $z = \sqrt{x^2 + y^2}$ comprendido entre los planos z = 0 y z = 4.

Ejercicio 5.42 Calcule la integral de superficie $\int_S \int yz^2 dS$ sobre la superficie de la esfera $x^2 + y^2 + z^2 = 9$ en el primer octante.

Ejercicio 5.43 Calcule la integral de superficie $\int_S \int (x^2 + y^2 + z^2) dS$, donde S es la porción del paraboloide $z = x^2 + y^2$ comprendido entre $0 \le z \le 5$.

Bibliografía

- [1] Beltrán Cortez, A. (2005). Cálculo vectorial y series de potencias. Lima, Perú: Editorial Universitaria.
- [2] Pita Ruiz, C. (2010). Cálculo vectorial. México: McGraw-Hill.
- [3] Lázaro Carrión, M. (2015). Análisis matemático III (2da ed.). Lima, Perú: Fondo Editorial.
- [4] Stewart, J. (2016). Cálculo de Varias Variables (8a ed.). Cengage Learning.
- [5] Marsden, J., y Tromba, A. (2011). Vector Calculus (6a ed.). W. H. Freeman.
- [6] Thomas, G. B., Weir, M. D., y Hass, J. R. (2017). *Thomas' Calculus* (14a ed.). Pearson.
- [7] Apostol, T. M. (1969). Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications. Wiley.
- [8] Kreyszig, E. (2021). Matemáticas avanzadas para la ingeniería (11a ed.). Wiley.
- [9] Flanders, H. (1989). Differential Forms with Applications to the Physical Sciences. Dover.
- [10] Spivak, M. (1965). Calculus on Manifolds. Addison-Wesley.
- [11] Zill, D. G. (2018). Ecuaciones diferenciales con aplicaciones de modelado (11a ed.). Cengage Learning.
- [12] Boyce, W. E., y DiPrima, R. C. (2020). Ecuaciones diferenciales elementales y problemas con valores en la frontera (11a ed.). Wiley.
- [13] Simmons, G. F. (1993). Ecuaciones diferenciales con aplicaciones y notas históricas (2da ed.). McGraw-Hill.
- [14] Edwards, C. H., y Penney, D. E. (2019). Ecuaciones diferenciales y problemas con valores en la frontera (5a ed.). Pearson.